简并半导体 Nature:1纳米芯片将成可能,台积电研制世界最薄二维半导体材料

小编 2024-10-08 生态系统 23 0

Nature:1纳米芯片将成可能,台积电研制世界最薄二维半导体材料

看点: 台积电成功研发出全球最薄的二维绝缘材料,1纳米芯片工艺要来了。

近日,台积电联手台湾交通大学成功研制出了一种全球最薄、厚度只有0.7纳米的基于氮化硼的超薄二维半导体绝缘材料,可望借此进一步开发出2纳米甚至1纳米制程的芯片,该成果发表在最近的《自然》期刊上。

氮化硼(BN)并非全新材料,之所以重要是因为其本身不仅具有良好的散热效果,更是一种出色的绝缘体。先进制程中会需要绝缘体的存在,他们存在的意义通常是要协助电子能顺利通过晶体管里的通道, 当制程持续往下走,通道势必越来越小。若没有很好的绝缘体,晶体管之间的串扰会很大,导致芯片的效能表现大打折扣。当制程步入3纳米以后,过去7纳米,5纳米所采用的氧化物绝缘体材料将不再适用,原因是因为这些氧化物绝缘体都是三维的,容易使一些电荷依附在上面,造成电流不易通过。

本期的智能内参,我们推荐台积电的论文《铜(111)面上单层晶圆级六方氮化硼单晶》, 权威解读台积电最新研发的二维半导体绝缘材料。如果想收藏本文的报告(从台积电核心能力,看半导体行业趋势与国产化路径),可以在“https://www.nature.com/articles/s41586-020-2009-2”获取。

以下为论文全文翻译:

超薄二维半导体层状材料为摩尔定律在集成电路继续发展提供了巨大的潜力。二维半导体的一个关键挑战是避免从相邻的电介质形成电荷散射和陷阱位点。六方氮化硼(hBN)的绝缘范德华层提供了出色的界面电介质,有效地减少了电荷的散射。最近的研究表明,在熔融金表面或块状铜箔上可以生长出单晶hBN膜。然而,由于熔融金的高成本,交叉污染以及过程控制和可扩展性的潜在问题,导致其不被工业界所青睐。铜箔可能适用于卷对卷工艺,但不太可能与晶圆上的先进微电子工艺兼容。

因此,寻求一种可靠的在晶圆上直接生长单晶hBN膜的方法将有助于二维材料在工业中的广泛采用。先前在Cu(111)金属上生长hBN单层的尝试未能实现单向性,当这些层合并成膜时会导致不希望的晶界。即使在理论上,也普遍认为在诸如Cu(111)这样的高对称性表面上生长单晶hBN是不可能的。尽管如此,这篇文章报告了在两英寸c-plane蓝宝石晶圆上的Cu(111)薄膜上单晶hBN单层的外延生长。

作者通过第一性原理计算结果证实了这一令人惊讶的结果,这表明通过hBN侧向对接Cu(111)步骤可增强外延生长,从而确保hBN单层的单向性。所获得的单晶hBN以底栅配置作为二硫化钼和二氧化铪之间的界面层并入,提高了晶体管的电性能。这种生产晶圆级单晶hBN的可靠方法为将来的二维电子学铺平了道路。

首先,需要制备晶圆的单晶Cu(111)薄膜。厚箔中的单晶铜可以通过注入种子引起的重结晶来实现。然而,晶圆上形成Cu(111)薄膜的结晶度强烈依赖于下面的衬底晶格。在这里,我们使用c-plane蓝宝石作为衬底,在其上溅射500nm厚的多晶Cu膜,然后进行热退火以获得单晶Cu(111)膜。这种方法的难点在于,Cu(111)倾向于通过动力学生长过程形成由双晶晶界隔开的双晶。图1a说明了典型的孪晶Cu(111)结构的原子排列。作者发现,在高温(1,040–1,070 ℃)下,在氢气的存在下进行后退火是去除孪晶的关键。

图1b,c显示了在1,000 ℃和1,050 ℃退火后的Cu(111)薄膜的光学显微照片和电子背散射衍射(EBSD)图。EBSD结果证实了在1,000 C退火的Cu薄膜中,孪晶Cu(111)多晶在0°和60°面内取向不良的情况下共存。在1050℃下退火后,去除面内取向不良,生成单晶Cu(111)。X射线衍射结果也证明了这种方法获得单晶Cu(111)薄膜是可行的。这里需要注意的是,优先选用较薄的Cu膜形成Cu(111),但是也需要足够厚的Cu膜以防止在随后的hBN生长期间Cu蒸发。因此,对于单晶hBN生长,存在最佳的Cu厚度(约500 nm)。

▲Cu(111)在c-plane蓝宝石基底上的晶格取向

实现单取向hBN三角形薄片的生长是获得晶圆级单晶hBN的重要步骤。由于Cu(111)的六重对称性,hBN与Cu(111)的范德华配准导致了两组能量最小的构型(其取向相差60°或180°),且结合能几乎是简并的。因此,通常认为将hBN薄片限制在这种高对称性表面上是单向的是不可能的。但作者实验表明,在自发存在的顶层Cu台阶边缘的存在下,可以消除能量简并性。hBN单层的生长是通过在热壁化学气相沉积(CVD)炉中将氨硼烷前体流到1英寸单晶Cu(111)薄膜/蓝宝石上来进行的。

在具有双晶的Cu(111)薄膜上生长的单层hBN三角形薄片的光学显微照片(图2a)显示,hBN薄片在一个孪晶上朝向相同的方向,并且在相反的方向(或沿60°平面内旋转)取向配对双胞胎上的“ z轴”(扩展数据,图2)。图2b显示了在没有双晶粒的单晶Cu(111)薄膜上生长的hBN薄片的光学显微照片,其中几乎所有三角形都是单向排列的(另请参见图3的扩展数据以获取hBN取向分布的统计分析)三角形薄片)。对单个单晶Cu(111)晶粒的单向观察清楚表明,存在能量最小的hBN-Cu(111)构型。因此,消除Cu(111)中的孪晶晶粒将确保在其上生长出单晶hBN。

为了验证单结晶度,我们使用微点低能电子衍射(μ-LEED)在一个1英寸晶圆上的80个位置使用约3μm的探针大小来表征从单向三角形融合的hBN单层。图2c显示了来自九个随机选择位点的μ-LEED模式。所有结果表明,hBN单层与Cu(111)表面单向对齐,表明它们的单晶性严格遵循Cu(111)晶格。图2d中hBN在Cu(111)上的原子分辨扫描隧道显微镜(STM)图像显示了完美的hBN晶格,测得的晶格常数为2.50±0.1Å。作者探查了20多个位置,所有STM图像均显示了相同的hBN晶格取向。作者没有观察到由相邻的取向错误的hBN域形成的任何晶界,表明hBN的单晶性质。

在某些区域,莫尔条纹是由于hBN与下面的Cu(111)衬底之间的晶格失配和/或相对较小的旋转(在1.5°内)引起的。莫尔边界区域的放大原子分辨率图像显示,hBN在斑块边界处表现出完美的晶格相干性,表明莫尔图案的形成不会影响整体hBN取向。作者认为,hBN在高温下完成了单晶生长,并且在生长后与样品冷却相关的应变导致形成了局部莫尔条纹。其他特征,包括X射线光电子能谱(XPS)和拉曼光谱,证明了B–N化学键结构(图2e,f)。透射电子显微镜(TEM)和原子力显微镜(AFM)的图像一致显示,这种生长出的hBN确实是单层的(图2g,h)。

▲单晶hBN在Cu(111)膜上的生长和原子结构

作者发现,在1,050 ℃下制备出Cu(111)薄膜,即可在995 C至1,070 ℃的各种生长温度下实现hBN薄片的单取向生长。但是,较低的生长温度(995 C至1,010 ℃)通常会导致质量较低的hBN薄片,随后在150 ℃的空气中进行氧化测试时,这些薄片很容易被氧化。因此,作者使用了更高的生长温度(通常为1,050 ℃)来确保高质量的单晶hBN生长。

为了解释hBN在Cu(111)上的优选取向,作者考虑使用小的刚性B6N7分子(即在能量上有利的N端三环结构)作为探针种子。我们首先使用密度泛函理论(DFT)来计算平面对平面外延的影响,以计算六个典型原子堆叠构型的结合能(图3a),其中NIBIII,NIIIBII和NIIBI被定义为0°方向,而NIBII,NIIBIII和NIIIBI为60°(倒置)方向。NiBj表示第i层中的Cu原子(位于上方)与N原子的配准堆叠,而B原子与第j层的Cu原子配准。计算表明,在第一层Cu原子(NIBIII(0°)和NIBII(60°))上具有N原子的堆叠具有最低的能量,而在第一层Cu原子(NIIBI)之上的B原子(0°)和NIIIBI(60°))在能量上不利。

优先配准反映了B和N原子的电子亲和力,这导致N(或B)原子与第一层Cu原子之间产生吸引(或排斥)的库仑相互作用,从而影响结构稳定性。我们发现,0°(NIBIII)和60°(NIBII)取向的最低能级结构显示出的能量差仅为0.05 eV左右,远小于生长温度下的热能kBT(约0.1 eV),表明与模拟结果一致,面到面不足以实现单向增长。

▲在成核时外延的DFT计算,包含考虑和不考虑台阶边缘对接结果

实际上,如STM图像所示(图2d),铜(111)表面并非完全平坦,存在许多阶梯状曲折台阶。最近的理论表明,必须考虑这些台阶边缘在hBN生长中的作用。其他一些工作表明,基于Cu阶跃阶梯仅在整个Cu的邻近表面上一直向上或向下趋势的假设,在Cu(110)表面的邻近台阶边缘处的对接控制着单晶hBN的生长。但是,作者的STM结果清楚地表明,整个晶圆上Cu(111)表面的平台台阶都向上和向下趋向,并且边缘对接似乎可以在两个方向上产生hBN,除非结合能相差足够大在另一个方向利于生长。为了在模型中捕捉到这一点,作者在第一层的顶部添加了一层额外的Cu原子层(图3中的红色),形成了两个相对的台阶边缘(图3a中的A和B台阶边缘)。当对接至A(或B)台阶时,这会将B6N7种子限制为0°(或60°)方向(图3a)。

在图3a,b中,每种配置的Cu台阶边缘和B6N7之字形边缘之间的距离已通过能量最小化确定。在存在铜台阶边缘的情况下,每种构型的结合能以一种微妙而又非常重要的方式变化(图3b):两种构型NIBII(60°)和NIBIII(0°),平面对平面外延被约0.23 eV的δE值隔开,该值与对接长度成比例增加,迅速放大了玻尔兹曼选择性因子exp(δ/ E kBT)(对于仅五到六个六边形的接触长度,玻尔兹曼选择性因子增加到103以上)。这样的能量差显然确保了单向生长。作者的STM结果(扩展数据,图7)显示,所有弯曲步骤均相当弯曲且局部粗糙,因此它们均由A和B型线段组成。BN种子应在A到B角处动态成核,同时停靠在具有正确方向的更强结合位点B类型上(扩展数据图7e)。模拟以及实验结果表明,Cu(111)表面具有台阶边缘是实现单晶hBN生长的关键。

在成功的在1英寸Cu(111)薄膜上生长单晶hBN之后,作者进一步将生长规模扩大到了两英寸晶圆,如图4a所示。鉴于完全生长的hBN层与Cu(111)之间的相互作用仅限于弱范德华力,可以借助电化学过程进行聚合物辅助转移15、16来实现晶圆级hBN的分离。图4c显示了转移到四英寸SiO2 / Si晶片上的两英寸hBN单层的照片。结果表明,与使用厚铜箔或其他金属相比,单晶晶圆级hBN在Cu(111)薄膜上的生长具有可扩展性,并且更具成本效益,因此对于微电子行业而言可能是一种首选方法。晶圆级单晶hBN的可用性将刺激并实现未来二维电子学的进一步研究和开发。作者构建了带有和不带有单晶和多晶hBN的单层MoS2场效应晶体管(FET),作为底栅配置中的界面电介质。在具有单晶hBN单层的器件中,MoS2中迁移率的增强和磁滞的抑制是实质性的,这表明其有望用于二维的晶体管。

▲晶圆级hBN转移过程的原理图和照片

智东西 认为, 近年来,摩尔定律正在面临失效。晶体管小型化已经逼近物理极限。一旦低于5纳米,晶体管中电子的行为将受制于量子不确定性,很容易产生隧穿效应,晶体管变得不再可靠,芯片制造面临巨大挑战。在所谓的“后摩尔时代”,世界各国科学家都开始积极探索各种新技术、新工艺、新材料。二维材料,属于这些新兴研究领域中的佼佼者。台积电这种氮化硼单晶,作为保护二维半导体材料的通道,对未来芯片制程的缩小具有十分重要的意义。

感谢阅读。点击关注上船,带你浪在科技前沿~

一篇了解透彻——半导体的物理名词

金刚石型结构

金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。每个原子周围都有4个最近邻的原子,组成一个正四面体结构。

闪锌矿型结构

闪锌矿型结构的晶胞,它是由两类原子各自组成的面心立方晶格,沿空间对角线彼此位移四分之一空间对角线长度套构而成。

有效质量

粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。有效质量表达式为:

费米能级

费米能级是T=0 K时电子系统中电子占据态和未占据态的分界线,是T=0 K时系统中电子所能具有的最高能量。

准费米能级

统一的费米能级是热平衡状态的标志。当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。但是可以认为,分别就导带和价带中的电子讲,他们各自基本上处于平衡状态,导带与价带之间处于不平衡状态。因为费米能级和统计分布函数对导带和价带各自仍是适用的,可以引入导带费米能级和价带费米能级,它们都是局部的费米能级。称为“准费米能级”

费米面

将自由电子的能量E等于费米能级Ef的等能面称为费米面。

费米分布

大量电子在不同能量量子态上的统计分布。费米分布函数为:

施主能级

通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能量状态称为施主能级。

受主能级

通过受主掺杂在半导体的禁带中形成缺陷能级,被受主杂质束缚的空穴的能量状态称为受主能级。

禁带

能带结构中能态密度为零的能量区间。

价带

半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

导带

导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

N型半导体

在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。

P型半导体

在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。

简并半导体

对于重掺杂半导体,费米能级接近或进入导带或价带,导带/价带中的载流子浓度很高,泡利不相容原理起作用,电子和空穴分布不再满足玻耳兹曼分布,需要采用费米分布函数描述。称此类半导体为简并半导体。

非简并半导体

掺杂浓度较低,其费米能级EF在禁带中的半导体 ; 半导体中载流子分布可由经典的玻尔兹曼分布代替费米分布描述时,称之为非简并半导体

施主杂质

V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

受主杂质

Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

替位式杂质

杂质原子取代晶格原子而位于晶格点处。

间隙式杂质

杂质原子位于晶格原子的间隙位置。

等电子杂质

当杂质的价电子数等于其所替代的主晶格原子的价电子数时,这种杂质称为等电子杂质

空穴

定义价带中空着的状态看成是带正电荷的粒子,称为空穴

意义 a 把价带中大量电子对电流的贡献仅用少量的空穴表达出来 b金属中仅有电子一种载流子,而半导体中有电子和空穴两种载流子,正是这两种载流子的相互作用,使得半导体表现出许多奇异的特性,可用来制造形形色色的器件

理想半导体(理想与非理想的区别)

a 原子并不是静止在具有严格周期性的晶格的格点位置上,而是在其平衡位置附近振动

b 半导体材料并不是纯净的,而是含有各种杂质 即在晶格格点位置上存在着与组成半导体材料的元素不同其他化学元素的原子

c 实际的半导体晶格结构并不是完整无缺的,而存在着各种形式的缺陷

杂质补偿

在半导体中,施主和受主杂质之间有相互抵消的作用通常称为杂质的补偿作用

深能级杂质

非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生的施主能级距离导带较远,他们产生的受主能级距离价带也较远,通常称这种能级为深能级,相应的杂质为深能级杂质

浅能级杂质

在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

迁移率

单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。迁移率的表达式为:μ=qτ/m* 。可见,有效质量和弛豫时间(散射)是影响迁移率的因素。

空穴的牵引长度

表征空穴漂移运动的有效范围的参量就是空穴的牵引长度

点缺陷

是最简单的晶体缺陷,它是在 结点上 或 邻近的微观区域内 偏离晶体结构的正常排列 的一种缺陷。包括:间隙原子和空位是成对出现的弗仓克耳缺陷 和只在晶体内形成空位而无间隙原子的肖特基缺陷。

弗仑克耳缺陷

间隙原子和空穴成对出现导致的缺陷。

肖特基缺陷

只在晶体内形成空位而无间隙原子时的缺陷。

空穴

在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。

空位

在一定条件下,晶格原子不仅在其平衡位置附近振动,而且有一部分原子会获得足够的能量,脱离周围原子对他的束缚,挤入晶格原子间隙间成为间隙原子,原来的位置便成为空位

本征载流子

就是本征半导体中的载流子(电子和空穴),即不是由掺杂所产生出来的。

非平衡载流子

半导体处于非平衡态时,比平衡态时多出来的那一部分载流子称为非平衡载流子。Δp=Δn

热载流子

热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子与晶格系统不再处于热平衡状态。温度是平均动能的量度,既然载流子的能量大于晶格系统的能量,人们便引入载流子的有效温度Te来描写这种与晶格系统不处于热平衡状态时的载流子,并称这种状态载流子为热载流子

束缚激子

等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。

漂移运动

在外加电压时,导体或半导体内的载流子受电场力的作用,做定向运动。

扩散运动

当半导体内部的载流子存在浓度梯度时,引起载流子由浓度高的地方向浓度低的地方扩散,扩散运动是载流子的有规则运动。

状态密度

就是在能带中能量E附近每单位能量间隔内的量子态数。

直接复合

导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合

间接复合

导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。

俄歇复合

载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。

陷阱中心

半导体中的杂质和缺陷在禁带中形成一定的能级,这些能级具有收容部分非平衡载流子的作用,杂质能级的这种积累非平衡载流子的作用称为陷阱效应。把产生显著陷阱效应的杂质和缺陷称为陷阱中心。

复合中心

半导体中的杂质和缺陷可以在禁带中形成一定的能级,对非平衡载流子的寿命有很大影响。杂质和缺陷越多,寿命越短,杂质和缺陷有促进复合的作用,把促进复合的杂质和缺陷称为复合中心。

等电子复合中心

在Ⅲ-Ⅴ族化合物半导体中掺入一定量的与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子和主原子之间电负性的差别,中性杂质原子可以束缚电子或空穴而成为带电中心,带电中心会吸引和被束缚载流子符号相反的载流子,形成一个激子束缚态。

爱因斯坦关系

对电子Dn/μn =k0T/q 对空穴Dp/μp =k0T/q它表明非简并情况下载流子的迁移率和扩散系数之间的关系。

陷阱效应

杂质能级积累非平衡载流子的作用就称为陷阱效应。

回旋共振

一些物质如半导体中的载流子在一定的恒定磁场和高频磁场同时作用下会发生抗磁共振。

砷化镓负阻效应

当电场达到一定値时,能谷1中的电子可从电场中获得足够的能量而开始转移到能谷2,发生能谷间的散射,电子的动量有较大的改变,伴随吸收或发射一个声子。但是,这两个能谷不是完全相同的,进入能谷2的电子,有效质量大为增加,迁移率大大降低,平均漂移速度减小,电导率下降,产生负阻效应

耿氏效应

在半导体本体内产生高频电流的现象称为耿氏效应

扩散长度

扩散长度是表征载流子扩散有效范围的一个物理量,它等于扩散系数乘以寿命的平方根。

势垒电容

在外加正向偏压增加时,将有一部分电子和空穴“存入”势垒区,反之,当正向偏压减小时,势垒区的电场增强,势垒区宽度增加,空间电荷数量增多,这就是有一部分电子和空穴从势垒区“取出”。对于加反向偏压的情况类似。总之,pn结上外加电压的变化,引起了电子和空穴在势垒区的“存入”和“取出”作用,导致势垒区的空间电荷数量随外加电压而变化,这和一个电容器的充放电作用相似,这种pn结的电容效应称为势垒电容

扩散电容

正向偏压时,有空穴从p区注入n区,于是在势垒区与n区边界n区一侧一个扩散长度内,便形成了非平衡空穴和电子的积累,同样在p区也有非平衡电子和空穴的积累。当正向偏压增加时,由p区注入到n区的空穴增加,注入的空穴一部分扩散走了。所以外加电压变化时,n区扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。同样,p区扩散区内积累的非平衡电子和与它保持电中性的空穴也要增加。这种由于扩散区的电荷数量随外加电压的变化所产生的电容效应,称为pn结的扩散电容

pn结隧道效应

在简并化的重掺杂半导体中,n型半导体的费米能级进入了导带,p型半导体的费米能级进入了价带。在重掺杂情况下,杂质浓度大,势垒区很薄,由于量子力学的隧道效应,n区导带的电子可能穿过禁带到p区价带,p区价带电子也可能穿过禁带到n区导带,从而有可能产生隧道电流。

耗尽层近似

当势垒高度远大于koT时,势垒区可近似为一个耗尽层。在耗尽层中,载流子极为稀少,他们对空间电荷的贡献可以忽略;杂质全部电离,空间电荷完全由电离杂质的电荷形成。

肖特基势垒二极管

利用金属-半导体整流接触效应特性制成的二极管称为肖特基势垒二极管,它和pn结二极管具有类似的电流-电压关系,即它们都有单向导电性,但前者又又区别于后者的以下显著特点 a 就载流子的运动形式而言,pn结正向导通时,由p区注入n区的空穴或由n区注入p区的电子,都是少数载流子,他们先形成一定的积累,然后靠扩散运动形成电流。这种注入的非平衡载流子的积累称为电荷贮存效应,它严重地影响了pn结的高频性能。而肖特基势垒二极管的正向电流,主要是由半导体的多数载流子进入金属形成的。它是多数载流子器件。因此,肖特基势垒二极管比pn结二极管有更好的高频特性 b 对于相同的高度,肖特基势垒二极管的Jsd或Jst要比pn结的反向饱和电流Js大得多。

欧姆接触

金属与半导体接触时还可以形成非整流接触,即欧姆接触,它不产生明显的附加阻抗,而且不会使半导体内部的平衡载流子浓度发生显著的改变(半导体重掺杂时,它与金属的接触可以形成接近理想的欧姆接触

理想MIS结构

a 金属与半导体间功函数差为零

b 在绝缘层中没有任何电荷且绝缘层完全不导电

c 绝缘层与半导体界面处不存在任何界面态

深耗尽状态

在金属和半导体之间加一脉冲阶跃或高频正弦波形成的正电压时,由于空间电荷层内的少数载流子的产生速率跟不上电压的变化,反型层来不及建立,只有靠耗尽层延伸向半导体深处而产生大量受主负电荷以满足电中性条件。因此,这种情况时,耗尽层的宽度很大,可远大于强反型的最大耗尽层宽度,且其宽度随电压幅度的增大而增大,这种状态称为深耗尽状态

Si-SiO2系统各种电荷

a 二氧化硅层中的可动离子。主要是带正电的钠离子,还有钾、氢等正离子

b 二氧化硅层中的固定电荷

c 二氧化硅层中的电离陷阱电荷。是由于各种辐射如X射线、γ射线、电子射线等引起

异质结

有两种不同的半导体单晶材料可超过组成的结,则称为异质结

异质结的特点

a 能带发生了弯曲,出现“尖峰”和“凹口”

b 能带在交界面处不连续,有一个突变

异质pn结的超注入现象

指在异质pn结中有宽禁带半导体注入到窄禁带半导体中的少数载流子浓度宽带半导体中多数载流子浓度

间接带隙半导体

导带极小值和价带极大值没有对应于相同的波矢,例如像锗、硅一类半导体,价带顶位于K空间原点,而导带低则不在k空间原点,这种半导体称为间接带隙半导体

非竖直(直接)跃迁

在非竖直(直接)跃迁中,电子不仅吸收光子,同时还和晶格交换一定的振动能量,即吸收或放出一个声子

光电探测器件工作原理及用途

有光照引起半导体电导率增加的现象称为光电导。大量实验证明,半导体光电导的强弱与照射波长有密切的关系,所谓光电导的光谱分析,就是指对应于不同的波长,光电导响应灵敏度的变化关系。因此,可以通过测量光电导的光谱分布来确定半导体材料光电导特性,根据这一原理可制成光电探测器。用途:PbS、PbSe和PbTe是重要的红外探测器材料,CdS除了对可见光有响应外,还可有效地用于短波方面,知道x光短波

半导体太阳电池的基本原理

当用适当波长的光照射非均匀半导体(pn结等)时,由于内建电场的作用(不加外电场),半导体内部产生电动势(光生电压),如将pn结短路,则出现电流。这种由内建电场引起的光电效应,称为光生伏特效应。根据这一原理可制成太阳能电池,将太阳辐射能直接转变为电能

光电池(光电二极管)的基本原理

当用适当波长的光照射pn结时,由于pn结势垒区内存在较强的内建电场,结两边的光生少数载流子受该场的作用,各自向相反的方向运动,pn结两端产生光生电动势,如将pn结与外电路接通,只要光照不停止,就会有渊源不断的电流过电路,pn结起到了电源的作用

半导体发光器件的基本原理

半导体的电子可以吸收一定能量的光子而被激发。同样,处于激发态的电子也可以向较低的能级跃迁,以光辐射的形式释放出能量,也就是电子从高能级向低能级跃迁,伴随着发射光子,这就是半导体的发光现象。(产生光子发射的主要条件是系统必须处于非平衡状态,即在半导体内需要有某种激发过程存在,通过与非平衡载流子的复合,才能形成发光

半导体激光器件的基本原理

处在激发态E2的原子数大于处在激发态E1的原子数,则在光子流hν12照射下,受激辐射将超过吸收过程。这样由系统发射的能量为hν12将大于进入系统的同样能量的光子数,这钟现象称为光量子放大。通常把处于激发态E2(高能级)的原子数大于处在激发态E1(低能级)的原子数的这种反常情况,称为“分布反转”或“粒子数反转”。激光的发射,必须满足 a 形成分布反转,使受激辐射占优势 b 具有共振腔,以实现光量子放大 c 至少达到阈值电流密度,使增益至少等于损耗

半导体霍尔器件的基本原理

把通有电流的半导体放在均匀磁场中,设电场沿X方向,磁场方向和电场垂直,沿z方向,则在垂直于电场和磁场的+y或-y方向将产生一个横向电场,这个现象称为霍尔效应。利用霍尔效应制成的电子器件称为霍尔器件

二维电子气

MOS反型层中的电子被局限在很窄的势阱中运动,所以反型层中的电子沿垂直于界面的z方向的运动是量子化的,形成一系列分立能级E0,E1,…,Ej…。在xy平面内,即沿着界面方向能量仍是准连续的。称这样的电子系统为二维电子气

半导体压阻器件的基本原理

对半导体施加应力时,半导体的电阻率要发生改变,这种现象称为压阻效应。应用:半导体应变计、压敏二极管、压敏晶体管等

a 利用半导体电阻随应力变化的这一现象可以制成半导体应变计

b pn结伏安特性随压力变化很大,利用他的这一压敏特性可以制成压敏二极管和压敏三极管

非晶态半导体

原子排列不具有周期性,即不具有长程有序的半导体称为非晶态半导体

半导体热电效应应用

温差发电器制冷器原理P373

判断半导体的导电类型

热探针法

当温度增加时,载流子浓度和速度都增加,它们由热端扩散到冷端,如果载流子是空穴,则热端缺少空穴,冷端有过剩空穴,冷端电势较高,形成由冷端指向热端的电场;如果载流子是电子,则热端缺少电子,冷端有过剩电子,热端电势较高,形成由热端指向冷端的电场。所以,由半导体的温差电动势的正负,可以判断半导体的导电类型

霍尔效应法

n型和p型半导体的霍尔系数符号相反,也即霍尔电压Vh的正负相反,所以,从霍尔电压Vh的正负可以判断半导体的导电类型

相关问答

什么是简并半导体呢?

简并半导体(degeneratesemiconductor)是杂质半导体的一种,它具有较高的掺杂浓度,因而它表现得更接近金属。对一般的掺杂情况(杂质浓度小于10的18次方)常温...

什么是简并半导体呢?-131****3469的回答-懂得

在这样的情况下,导带中量子态被电子占据(或价带中量子态被空穴占据)的概率非常小的条件不再成立,必须考虑泡利不相容原理的限制在这样的情况下,导...

怎么判断简并半导体?-懂得

简并半导体是指价带和导带中存在多个能级时的半导体材料。一般来说,可以通过以下方式来判断一个材料是否为简并半导体:1.查看其能带结构:简并半导体...

什么是非简并半导体呢?

采用复杂的量子统计分布函数来讨论,其中载流子遵从经典的Boltzmann统计分布的半导体就是非简并半导体。另,载流子即容易出现量子特性,这时的载流子就是简并载...

简并半导体指的是什么?-懂得

对于p型半导体,发生简并的受主浓度接近或大于价带顶有效状态密度,如果受主电离能较小,受主浓度较小时就会发生简并对于p型半导体,发生简并的受主浓...

什么是"简并半导体"?-176****7135的回答-懂得

选取EFEC为简并化条件,得到简并时最小施主杂质浓度:选取EFEv为简并化条件,得到简并时最小受主杂质浓度:半导体发生简并时:(1)ND≥NC;NA≥NV;(2)ΔED...

什么是非简并半导体?什么是非简并半导体?

其中载流子遵从经典的Boltzmann统计分布的半导体就是非简并半导体。这在两种情况下容易出现:一是掺杂浓度较低,半导体中的载流子浓度不大,则电子只占据导带...

p型半导体的简并化条件?

对于半导体,其中的载流子在以下三种情况下容易出现简并:①载流子浓度很高半导体中的载流子浓度越大,则当电子只占据导带底附近的一些能级、空穴只占据价带顶...

半导体物理中的重掺杂的概念?_作业帮

[最佳回答]掺杂是针对杂志半导体而言,就是在本征半导体中参入3价或5价元素,使其成为向价带提供空穴的受主杂质或向导带发送电子的施主杂质.重掺杂就是参入的杂...

为基本半导体指的是什么呢?-懂得

发生载流子简并化的半导体称为基本半导体,对于p型半导体,其费米能级接近价带顶或进入价带,也必须用费米分布函数来分析价带中空穴的分布问题发生载...