半导体碳化硅 揭秘碳化硅,第三代半导体材料核心,应用七大领域,百亿市场空间 智东西内参

小编 2024-11-25 垂直应用 23 0

揭秘碳化硅,第三代半导体材料核心,应用七大领域,百亿市场空间 智东西内参

碳化硅具备耐高压、耐高温、高频、抗辐射等优良电气特性,突破硅基半导体材料物理限制,是第三代半导体核心材料。 碳化硅材料主要可以制成碳化硅基氮化镓射频器件和碳化硅功率器件。受益于 5G 通信、国防军工、新能源汽车和新能源光伏等领域的发展,碳化硅需求增速可观。

本期的智能内参,我们推荐安信证券的报告《市场空间巨大,SiC 国产化趋势加速》,从的市场前景、行业玩家和发展趋势分析碳化硅的国产化趋势。

来源 中信建投

原标题:

《市场空间巨大,SiC 国产化趋势加速》

作者: 马良

一、 性能突出,宽禁带半导体核心材料

第一代半导体主要有硅和锗,由于硅的自然储量大、制备工艺简单,硅成为制造半导体产品的主要原材料,广泛应用于集成电路等低压、低频、低功率场景。但是,第一代半导体材料难以满足高功率及高频器件需求。

砷化镓是第二代半导体材料的代表,较高的电子迁移率使其应用于光电子和微电子领域,是制作半导体发光二极管和通信器件的核心材料。但砷化镓材料的禁带宽度较小、击穿电场低且具有毒性,无法在高温、高频、高功率器件领域推广。

第三代半导体材料以碳化硅、氮化镓为代表,与前两代半导体材料相比最大的优势是较宽的禁带宽度,保证了其可击穿更高的电场强度,适合制备耐高压、高频的功率器件,是电动汽车、5G 基站、卫星等新兴领域的理想材料。

三代半导体材料的指标参数对比

SiC 具有宽的禁带宽度、高击穿电场、高热传导率和高电子饱和速率的物理性能,使其有耐高温、耐高压、高频、大功率、抗辐射等优点,可降低下游产品能耗、减少终端体积。碳化硅的禁带宽度大约为 3.2eV,硅的宽带宽度为 1.12eV,大约为碳化硅禁带宽度的 1/3,这也就说明碳化硅的耐高压性能显著好于硅材料。

此外,碳化硅的热导率大幅高于其他材料,从 而使得碳化硅器件可在较高的温度下运行,其工作温度高达 600℃,而硅器件的极限温度仅为 300℃;另一方面,高热导率有助于器件快速降温,从而下游企业可简化器件终端的冷却系统,使得器件轻量化。根据 CREE 的数据,相同规格的碳化硅基 MOSFET 尺寸仅为硅基MOSFET 的 1/10。

同时,碳化硅具有较高的能量转换效率,且不会随着频率的提高而降低,碳化硅器件的工作频率可以达到硅基器件的 10 倍,相同规格的碳化硅基 MOSFET 总能量损耗仅为硅基 IGBT 的 30%。碳化硅材料将在高温、高频、高频领域逐步替代硅,在 5G 通信、航空航天、新能源汽车、智能电网领域发挥重要作用。

碳化硅产业链可分为三个环节:碳化硅衬底材料的制备、外延层的生长、器件制造以及下游应用市场,通常采用物理气相传输法(PVT 法)制备碳化硅单晶,再在衬底上使用化学气相沉积法(CVD 法)生成外延片,最后制成器件。

SiC 器件的产业链中,主要价值量集中于上游碳化硅衬底(占比 50% 左右)

碳化硅衬底的产业链

碳化硅衬底根据电阻率划分:半绝缘型碳化硅衬底:指电阻率高于 105Ω·cm 的碳化硅衬底,其主要用于制造氮化镓微波射频器件。微波射频器件是无线通讯领域的基础性零部件,中国大力发展 5G 技术推动碳化硅衬底需求释放。

导电型碳化硅衬底:指电阻率在 15~30mΩ·cm 的碳化硅衬底。由导电型碳化硅衬底生长出的碳化硅外延片可进一步制成功率器件,功率器件是电力电子变换装置核心器件,广泛应用于新能源汽车、光伏、智能电网、轨道交通等领域。汽车电动化趋势利好 SiC发展。

碳化硅应用场景根据产品类型划分:

1、射频器件 :射频器件是在无线通信领域负责信号转换的部件,如功率放大器、射频开关、滤波器、低噪声放大器等。碳化硅基氮化镓射频器件具有热导率高、高频率、高功率等优点,相较于传统的硅基 LDMOS 器件,其可以更好地适应 5G 通信基站、雷达应用等领域低能耗、高效率要求。

2、功率器件 :又称电力电子器件,主要应用于电力设备电能变换和控制电路方面的大功率电子器件,有功率二极管、功率三极管、晶闸管、MOSFET、IGBT 等。碳化硅基碳化硅器件在 1000V 以上的中高压领域有深远影响,主要应用领域有电动汽车/充电桩、光伏新能源、轨道交通、智能电网等。

3、新能源汽车 :电动汽车系统涉及功率半导体应用的组件有电机驱动系统、车载充电系统(On-board charger,OBC)、车载 DC/DC 及非车载充电桩。其中,电动车逆变器市场碳化硅功率器件应用最多,碳化硅模块的使用使得整车的能耗更低、尺寸更小、行驶里程更长。目前,国内外车企均积极布局碳化硅器件应用,以优化电动汽车性能,特斯拉、比亚迪、丰田等车企均开始采用碳化硅器件。随着碳化硅功率器件的生产成本降低,碳化硅在充电桩领域的应用也将逐步深入。

4、光伏发电 :目前,光伏逆变器龙头企业已采用碳化硅 MOSFET 功率器件替代硅器件。根据中商情报网数据,使用碳化硅功率器件可使转换效率从 96%提高至 99%以上,能量损耗降低 50%以上,设备循环寿命提升 50 倍,从而带来成本低、效能高的好处。

5、智能电网 :国家大力发展新基建,特高压输电工程对碳化硅功率器件具有重大需求。其在智能电网中的主要应用场景包括:高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置。相比其他电力电子装置,电力系统要求更高的电压、更大的功率容量和更高的可靠性,碳化硅器件突破了硅基功率半导体器件在大电压、高功率和高温度方面的限制所导致的系统局限性,并具有高频、高可靠性、高效率、低损耗等独特优势,在固态变压器、柔性交流输电、柔性直流输电、高压直流输电及配电系统等应用方面推动智能电网的发展和变革。

6、轨道交通 :轨道交通对其牵引变流器、辅助变流器、主辅一体变流器、电力电子变压器、电源充电机等装置

7、射频通信 :碳化硅基氮化镓射频器件同时具备碳化硅的高导热性能和氮化镓在高频段下大功率射频输出的优势,能够满足 5G 通讯对高频性能和高功率处理能力的要求,逐步成为 5G功率放大器尤其宏基站功率放大器的主流技术路线。

二、 碳化硅市场前景

自 1955 年菲力浦实验室的 Lely 首次在实验室成功制备碳化硅单晶以来,在随后的 60 余年中,美国、欧洲、日本等发达国家与地区的科研院所与企业不断创新和改良碳化硅单晶的制备技术与设备,在碳化硅单晶晶体及晶片技术与产业化领域形成了较大优势。

碳化硅功率器件在风力发电、工业电源、航空航天等领域已实现成熟应用。伴随新能源汽车、光伏发电、轨道交通、智能电网等产业的快速发展,功率器件的使用需求大幅增加。根据 IC Insights《2019 年光电子、传感器、分立器件市场分析与预测报告》, 2018 年全球功率器件的销售额增长率为 14%,达到 163 亿美元。未来,随着碳化硅和氮化镓功率器件的加速发展,全球功率器件的销售额预计将持续保持增长。预计 2018 至 2023 年期间,全球功率器件的销售额复合年增长率达到 3.3%,2023 年全球功率器件收入将达到 192 亿美元。

根据 IHSMarkit 数据,2018 年碳化硅功率器件市场规模约 3.9 亿美元,受新能源汽车庞大需求的驱动,以及电力设备等领域的带动,预计到 2027 年碳化硅功率器件的市场规模将超过 100 亿美元,碳化硅衬底的市场需求也将大幅增长。

碳化硅功率器件市场规模测算

新能源汽车行业是市场空间巨大的新兴市场,全球范围内新能源车的普及趋势逐步清晰化。随着新能源汽车的发展,对功率器件需求量日益增加,成为功率半导体器件新的增长点。

新能源汽车系统架构中涉及到功率半导体应用的组件包括:电机驱动系统、车载充电系统(OBC)、电源转换系统(车载 DC/DC)和非车载充电桩。碳化硅功率器件应用于电机驱动系统中的主逆变器,能够显著降低电力电子系统的体积、重量和成本,提高功率密度。

美国特斯拉公司的 Model 3 车型采用以 24 个碳化硅 MOSFET 为功率模块的逆变器,是第一家在主逆变器中集成全碳化硅功率器件的汽车厂商;碳化硅器件应用于车载充电系统和电源转换系统,能够有效降低开关损耗、提高极限工作温度、提升系统效率,目前全球已有超过 20 家汽车厂商在车载充电系统中使用碳化硅功率器件;碳化硅器件应用于新能源汽车充电桩,可以减小充电桩体积,提高充电速度。SiC 在新能源汽车上的应用将在保证汽车的强度和安全性能的前提下大大减轻汽车的重量,有效提升电动车 10%以上的续航里程,减少80%的电控系统体积。

碳化硅在电动汽车中的应用

新能源汽车碳化硅功率器件市场规模推算:根据中国汽车工业协会数据,我国新能源汽车销量由 2015 年的 33.1 万辆增至 2019 年的 120.6 万辆,复合增长率达 38%,渗透率达到4.7%。 根据工信部发布的《新能源汽车产业发展规划(2021-2035 年)》,2025 年我国汽车销量有望达到 3000 万辆,其中新能源汽车占新车总销量 20%,新能源汽车销量有望达到 600 万辆。

据天科合达招股书披露,根据现有技术方案,每辆新能源汽车使用的功率器件价值约 700 美元到 1000 美元。粗略估计,我国 2025 年新能源汽车使用的功率器件市场达 42~60 亿美元。

2013-2020 年新能源汽车销量及增长率

2021 年新能源汽车产销量

在光伏发电应用中,基于硅基器件的传统逆变器成本约占系统 10%左右,却是系统能量损耗的主要来源之一。使用碳化硅 MOSFET 或碳化硅 MOSFET 与碳化硅 SBD 结合的功率模块的光伏逆变器,转换效率可从 96%提升至 99%以上,能量损耗降低 50%以上,设备循环寿命提升 50 倍,从而能够缩小系统体积、增加功率密度、延长器件使用寿命、降低生产成本。高效、高功率密度、高可靠和低成本是光伏逆变器的未来发展趋势。在组串式和集中式光伏逆变器中,碳化硅产品预计会逐渐替代硅基器件。

光伏逆变器中碳化硅功率器件占比预测

全球光伏装机量预测

轨道交通车辆呈现多样化发展,从运行状态上可分为干线机车、城市轨道车辆、高速列车,其中城市轨道车辆和高速列车是轨道交通未来发展的主要动力。轨道交通车辆中大量应用功率半导体器件,其牵引变流器、辅助变流器、主辅一体变流器、电力电子变压器、电源充电机都有使用碳化硅器件的需求。

轨道交通中碳化硅功率器件占比预测

其中,牵引变流器是机车大功率交流传动系统的核心装备,将碳化硅器件应用于轨道交通牵引变流器,能极大发挥碳化硅器件高温、高频和低损耗特性,提高牵引变流器装置效率,符合轨道交通大容量、轻量化和节能型牵引变流装臵的应用需求,提升系统的整体效能。根据天科合达招股书,2012 年,包含碳化硅 SBD 的混合碳化硅功率模块在东京地铁银座线 37列车辆中商业化应用,实现了列车牵引系统节能效果的明显提升、电动机能量损耗的大幅下降和冷却单元的小型化;2014 年,日本小田急电铁新型通勤车辆配备了三菱电3300V/1500A 全碳化硅功率模块逆变器,开关损耗降低 55%、体积和重量减少 65%,电能损耗降低 20%至 36%。

半绝缘型碳化硅衬底主要应用于制造氮化镓射频器件。通过在半绝缘型碳化硅衬底上生长氮化镓外延层,制得碳化硅基氮化镓外延片,可进一步制成氮化镓射频器件。微波射频器件是实现信号发送和接收的基础部件,是无线通讯的核心,主要包括射频开关、LNA、功率放大器、滤波器等器件,其中,功率放大器是放大射频信号的器件,直接决定移动终端和基站的无线通信距离、信号质量等关键参数。

根据 Yole 的预测,得益于 5G 基站建设和雷达下游市场的大量需求,用于氮化镓外延的半绝缘型碳化硅衬底市场规模取得较快增长,半绝缘型碳化硅衬底市场出货量(折算为 4 英寸)将由 2020 年的 16.58 万片增长至 2025 年的 43.84万片,期间复合增长率为 21.50%。

半绝缘型碳化硅衬底销量预测(万片)

随着全球 5G 通讯技术的发展和推广,5G 基站建设将为射频器件带来新的增长动力。5G 通讯高频、高速、高功率的特点对功率放大器的高频、高速以及功率性能有更高要求。以碳化硅为衬底的氮化镓射频器件同时具备了碳化硅的高导热性能和氮化镓在高频段下大功率射频输出的优势,突破了砷化镓和硅基 LDMOS 器件的固有缺陷,能够满足 5G 通讯对高频性能和高功率处理能力的要求,碳化硅基氮化镓射频器件已逐步成为 5G 功率放大器尤其宏基站功率放大器的主流技术路线。

据 Yole Development 预测,2025 年全球射频器件市场将超过 250 亿美元,其中射频功率放大器市场规模将从 2018 年的 60 亿美元增长到 2025 年的104 亿美元,而氮化镓射频器件在功率放大器中的渗透率将持续提高。随着 5G 市场对碳化硅基氮化镓器件需求的增长,半绝缘型碳化硅晶片的需求量也将大幅增长。

不同材料微波射频器件的应用范围对比

三、主要玩家,海外巨头垄断

碳化硅器件代工领域,国内企业有相当竞争力。中车时代电气建有 6 英寸双极器件、8 英寸IGBT 和 6 英寸碳化硅的产业化基地,拥有芯片、模块、组件及应用的全套自主技术;华润微具备碳化硅功率器件制备技术。泰科天润是国内领先的碳化硅功率器件生产商,其在北京拥有一座完整的半导体工艺晶圆厂,可在 4/6 英寸 SiC 晶圆上实现半导体功率器件的制造工艺。

目前泰科天润的碳化硅器件 650V/2A-100A,1200V/2A-50A,1700V/5A -50A,3300V/0.6A-50A 等系列的产品已经投入批量生产,产品质量可以比肩国际同行业的先进水平。在 SiC 外延的研发和量产方面,我国也已紧跟世界一流水平,瀚天天成的产品已打入国际市场;我国 SiC IDM 主要有泰科天润、世纪金光、基本半导体、中电科 15 所、中电科 13所等。

衬底制备是碳化硅器件核心难点,也是成本高企的主要原因 。由于晶体生长速率慢、制备技术难度较大,大尺寸、高品质碳化硅衬底生产成本较高,碳化硅底较低的供应量和较高的价格一直是制约碳化硅基器件大规模应用的主要因素,限制了产品在下游行业的应用和推广。碳化硅价格昂贵,主要原因是其制造难度高。硅材料 72 小时可长出 2 米左右的晶体;但是碳化硅 144 小时生长出的晶体厚度只有 2-3 厘米,碳化硅长晶速度不到硅材料的百分之一。

其次,由于碳化硅硬度高(其硬度仅次于金刚石),对该材料进行光刻加工、切割都非常困难,损耗极大,将一个 3 厘米厚的晶锭切割 35-40 片需要花费 120 小时,远远慢于切割硅晶锭。另外,碳化硅生长环境温度远高于硅材料,硅的升华温度为 1400 度左右,而碳化硅的晶片生长需要 2000 度左右,这对炉管设备的要求更高。并且,SiC 的生长周期长,长出来晶锭的厚度较薄,控制良率难度高。

而随着尺寸的增大,碳化硅单晶扩径技术的要求越来越高。扩径技术需要综合考虑热场设计、扩径结构设计、晶体制备工艺设计等多方面的技术控制要素,最终实现晶体迭代扩径生长,从而获得直径达标的高质量籽晶,继而实现后续大尺寸将晶的连续生长。在最新技术研发储备上,行业领先者科锐公司和贰陆公司均已成功研发并投产 8 英寸产品,而国内公司在此方面较为落后。

目前导电型碳化硅衬底以 6 英寸为主,8 英寸衬底开始研发;半绝缘碳化硅衬底以 4 英寸为主,目前逐渐向 6 英寸衬底发展。6 英寸衬底面积为 4 英寸衬底的 2.25 倍,相同的晶体制备时间内衬底面积的倍数提升带来衬底成本的大幅降低。与此同时,单片衬底上制备的芯片数量随着衬底尺寸增大而增多,单位芯片的成本也即随之降低,因此碳化硅衬底正在不断向大尺寸的方向发展。

从产业格局看,全球碳化硅产业格局呈现美国、欧洲、日本三足鼎立态势 。其中美国全球独大,占有全球碳化硅产量的 70%~80%,碳化硅晶圆市场 CREE 一家市占率高达六成之多;欧洲拥有完整的碳化硅衬底、外延、器件以及应用产业链,在全球电力电子市场拥有强大的话语权;日本是设备和模块开发方面的绝对领先者。

上世纪 90 年代初美国 CREE 公司已成功推出碳化硅晶片产品,90 年代末成功研制出 4 英寸碳化硅晶片,并于 2001 年成功研制首个商用碳化硅 SBD 产品。随着碳化硅衬底和器件制备技术的成熟和不断完善,以及下游应用的需求增长,国际碳化硅龙头企业在保持技术和市场占有率的情况下,不断加强产业布局,主要措施包括:继续扩大产能,根据 CREE 公司官网,2019 年 5 月 CREE 斥资 10 亿美元扩大碳化硅晶片生产能力;加强与上下游产业链的联合,通过合同、联盟或其他方式提前锁定订单(如 2018 年 CREE 相继与 Infineon、ST 等欧美主要第三代半导体下游企业签订长期供货协议)。整体来看,国际半导体龙头企业纷纷在碳化硅领域加速布局,一方面将推动碳化硅材料的市场渗透率加速,另一方面也初步奠定了未来几年第三代半导体领域的竞争格局。

全球碳化硅产业链主要公司

从全球碳化硅(SiC)衬底的企业经营情况来看,以 2018 年导电性碳化硅晶片厂商市场占有率为参考,美国 CREE 公司占龙头地位,市场份额达 62%,其次是美国 II-VI 公司,市场份额约为 16%。总体来看,在碳化硅市场中,美国厂商占据主要地位。

SiC 衬底市场情况

导电型碳化硅晶片厂商市场占有率

四、 国内企业持续布局,加强产品创新

第三代半导体材料是信息产业、5G 通讯、国防军工等战略领域的核心材料,近年来,国家出台一系列半导体产业鼓励政策,为国内企业提供政策及资金支持,以推动以碳化硅为代表的第三代半导体材料发展。

SiC 行业是技术密集型行业,对研发人员操作经验、资金投入有较高要求。国际巨头半导体公司研发早于国内公司数十年,提前完成了技术积累工作。因此,国内企业存在人才匮乏、技术水平较低的困难,制约了半导体行业的产业化进程发展。而在碳化硅第三代半导体产业中,行业整体处于产业化初期,中国企业与海外企业的差距明显缩小。

受益于中国 5G 通讯、 新能源等新兴产业的技术水平、产业化规模的世界领先地位,国内碳化硅器件巨大的应用市场空间驱动上游半导体行业快速发展,国内碳化硅厂商具有自身优势。在全球半导体材料供应不足的背景下,国际龙头企业纷纷提出碳化硅产能扩张计划并保持高研发投入。同时,国内本土 SiC 厂家加速碳化硅领域布局,把握发展机会,追赶国际龙头企业。

国内厂商产品及产能情况

经过多年研发创新,国内部分公司已经掌握半绝缘型碳化硅衬底和导电型碳化硅衬底的生产技术,并且其产品质量达到国际先进水平。SiC 衬底产品的核心技术参数包括直径、微管密度、多型面积、电阻率范围、总厚度变化、弯曲度、翘曲度、表面粗糙度。

近年来,国内企业碳化硅衬底的制造工艺水平也不断提升。衬底良品率呈上升趋势,衬底良品率体现为单个半导体级晶棒经切片加工后产出合格衬底的占比,受晶棒质量、切割加工技术等多方面的影响。国内碳化硅衬底公司山东天岳,据公司招股书披露,核心生产环节的晶棒良品率由 2018 年的 41.00%上升至 2020 年的 50.73%,公司衬底良品率总体保持在70%以上,对公司产品质量的提升起到了明显的带动作用。

根据山东天岳招股书,半绝缘型碳化硅衬底市场,山东天岳在中国市场处于领先位置。根据 Yole 数据,2019-2020 年,在半绝缘型碳化硅衬底领域,天岳先进公司按销售额统计的市场份额均位列全球第三。目前,国内碳化硅半导体企业实现了设备研制、原料合成、晶体生长、晶体切割、晶片加工、清洗检测的全流程自主可控,有能力为下游外延器件厂商稳定提供高品质碳化硅晶片,加速碳化硅下游厂商实现进口替代。

在国家产业政策的支持和引导下,我国碳化硅晶片产业发展大幅提速。国内企业以技术驱动发展,深耕碳化硅晶片与晶体制造,逐步掌握了 2 英寸至 6 英寸碳化硅晶体和晶片的制造技术,打破了国内碳化硅晶片制造的技术空白并逐渐缩小与发达国家的技术差距。未来伴随我国新能源汽车、5G 通讯、光伏发电、轨道交通、智能电网、航空航天等行业的快速发展,我国碳化硅材料产业规模和产业技术将得到进一步提升。

智东西 认为,碳化硅领域,特别是碳化硅的高端(高压高功率场景)器件领域,基本上仍掌握在西方国家手里,SiC产业呈现美、日、欧三足鼎立的竞争格局,前五大厂商份额约90%。但是,碳化硅和第三代半导体,在整个行业范围内仍然是在探索过程中发展,远未达到能够大规模替代第二代半导体的成熟产业地步,国产替代的潜力巨大。

揭秘第三代半导体碳化硅!爆发增长的明日之星,国产前途无量 智东西内参

功率半导体的技术和材料创新都致力于提高能量转化效率(理想转化率100%),基于 SIC 材料的功率器件相比传统的 Si 基功率器件效率高、损耗小,在新能源车、光伏风电、不间断电源、家电工控等有广阔的应用前景。目前 SIC 行业发展的瓶颈主要在于 SIC 衬底成本高(是 Si 的 4-5 倍,预计未来 3-4 年价格会逐渐降为 Si 的 2 倍),同时 SIC MOS 为代表的 SIC 器件产品稳定性需要时间验证。国内外 SIC 产业链日趋成熟,成本也在持续下降,产业链爆发的拐点临近,Yole 预计 SIC 器件空间将从 2019 年4.8 亿美金到 2025 年 30 亿美金 2030 年 100 亿美金,即 10 年 20 倍增长。

本期的智能内参,我们推荐华安证券的研究报告,揭秘第三代半导体材料碳化硅及相关产业的最新发展情况。

本期内参来源:华安证券

原标题:

《 第三代半导体 SIC:爆发式增长的明日之星 》

作者: 尹沿技 刘体劲

一、 第三代半导体 SIC:性能优异,爆发前夜

1、 第三代半导体 SIC 材料的性能优势

第一代半导体材料主要是指硅(Si)、锗元素(Ge)半导体材料,应用极为普遍,包括集成电路、电子信息网络工程、电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业中都得到了极为广泛的应用;

第二代半导体材料主要是指化合物半导体材料,如砷化镓(GaAs)、锑化铟(InSb),主要用于制作高速、高频、大功率以及发光电子器件(LED),是制作高性能微波、毫米波器件及发光器件的优良材料。

Si 基器件在 600V 以上高电压以及高功率场合达到其性能的极限;为了提升在高压/高功率下器件的性能,第三代半导体材料 SiC (宽禁带)应运而生;

第三代半导体主要是 SIC 和 GaN,第二代和第三代也称作化合物半导体,即两种元素组成的半导体材料,区别于硅/锗等单质半导体:

半导体产业链一览

SIC 材料具有明显的性能优势。SiC 和 GaN 是第三代半导体材料,与第一二代半导体材料相比,具有更宽的禁带宽度、更高的击穿电场、更高的热导率等性能优势,所以又叫宽禁带半导体材料,特别适用于 5G 射频器件和高电压功率器件。

Si 与 SiC 材料优缺点对比

2、 第三代半导体 SIC 器件的性能优势

SIC 的功率器件如 SIC MOS,相比于 Si 基的 IGBT,其导通电阻可以做的更低,体现在产品上面,就是尺寸降低,从而缩小体积,并且开关速度快,功耗相比于传统功率器件要大大降低。

在电动车领域,电池重量大且价值量高,如果在 SIC 器件的使用中可以降低功耗,减小体积,那么在电池的安排上就更游刃有余;同时在高压直流充电桩中应用 SIC 会使得充电时间大大缩短,带来的巨大社会效益。

SiC MOS 相比 Si 功率器件的对比

根据 Cree 提供的测算: 将纯电动车 BEV 逆变器中的功率组件改成 SIC 时, 大概可以减少整车功耗 5%-10%;这样可以提升续航能力,或者减少动力电池成本。

总结来说,SiC 器件具备的多种优势将带动电动车续航能力的提升:

1). 高电能转换效率:SiC 属于宽能隙材料, 击穿场强度大比 Si 基半导体材料更适用在高功率的应用场景;

2). 高电能利用效率:SiC 属于宽能隙材料, 击穿场强度大比 Si 基半导体材料更适用在高功率的应用场景;

3). 低无效热耗:开关频率高, 速度快, 所产生无效的热耗减少, 使的电路、散热系统得以简化。

2019 年国际上的功率半导体巨头不断推出新的基于 SIC 材料的功率器件,且推出的几款 SiC SBD 及 MOSFET 均符合车规级(AEC-Q101)标准,这些产品应用于新能源车或者光伏领域等功率器件需求场景,将显著减少功耗,提高转化效率。

2019 年国际企业推出的部分经典 SiC 器件产品

3、 政策支持 VS 产业成熟度提升

2014 年初,美国宣布成立“下一代功率电子技术国家制造业创新中心”,期望通过加强第三代半导体技术的研发和产业化,使美国占领下一代功率电子产业这个正出现的规模最大、发展最快的新兴市场,并为美国创造出一大批高收入就业岗位。

日本建立了“下一代功率半导体封装技术开发联盟”由大阪大学牵头,协同罗姆、三菱电机、松下电器等 18 家从事 SiC 和 GaN 材料、器件以及应用技术开发及产业化的知名企业、大学和研究中心;

欧洲启动了产学研项目“LAST POWER”,由意法半导体公司牵头,协同来自意大利、德国等六个欧洲国家的私营企业、大学和公共研究中心,联合攻关 SiC和 GaN 的关键技术。

我国的“中国制造 2025”计划中明确提出要大力发展第三代半导体产业。2015 年 5 月,中国建立第三代半导体材料及应用联合创新基地,抢占第三代半导体战略新高地;国家科技部、工信部、北京市科委牵头成立第三代半导体产业技术创新战略联盟(CASA),对推动我国第三代半导体材料及器件研发和相关产业发展具有重要意义。

2017-2019 年国家第三代半导体相关政策

行业发展的瓶颈目前在于 SIC 衬底成本高:目前 SIC 的成本是 Si 的 4-5 倍,预计未来 3-5 年价格会逐渐降为 Si 的 2 倍左右,SIC 行业的增速取决于 SIC 产业链成熟的速度,目前成本较高,且 SIC 器件产品参数和质量还未经足够验证;

SIC MOS 的产品稳定性需要时间验证:根据英飞凌 2020 年功率半导体应用大会上专家披露,目前 SiC MOSFET 真正落地的时间还非常短,在车载领域才刚开始商用(Model 3 中率先使用了 SIC MOS 的功率模块),一些诸如短路耐受时间等技术指标没有提供足够多的验证,SIC MOS 在车载和工控等领域验证自己的稳定性和寿命等指标需要较长时间;

根据 Yole 预测,SIC 和 GaN 电力电子器件(注意是 GaN 在电力电子中的应用,不包括在高频射频器件)2023 年在整体功率器件渗透率分别为 3.75%和 1%;驱动因素是新能源汽车新能源发电以及快充。

目前国内外 SIC 产业链日趋成熟,成本持续下降,下游接受度也开始提升,目前整个产业链处于行业爆发的前夜。

SiC vs GaN vs Si 在电力电子器件中的渗透率

4、SiC 产业链总结

SIC 产业链分为三大环节:上游的 SIC 晶片和外延→中间的功率器件的制造(包含经典的 IC 设计→制造→封装三个小环节)→下游工控、新能源车、光伏风电等应用。目前上游的晶片基本被美国 CREE 和 II-VI 等美国厂商垄断;国内方面,SiC 晶片商山东天岳和天科合达已经能供应 2 英寸~6 英寸的单晶衬底,且营收都达到了一定的规模(今年均会超过 2 亿元 RMB);SiC 外延片:厦门瀚天天成与东莞天域可生产 2 英寸~6 英寸 SiC 外延片。

国外 SIC 功率器件玩家:

传统的功率器件厂商包括英飞凌、意法半导体、三菱电机、富士电机;借助SIC 材料介入 SIC 器件的 CREE;

国内 SIC 功率器件玩家:泰科天润,中电科 55 所,基本半导体,三安集成,华润微等。

SIC 晶片、外延和设备:国外 CREE 和 II-VI 占据了 SIC 片 70%以上的份额,国内山东天岳和天科合达已经初具规模;露笑科技 2019 年 11 月公告,露笑科技将为中科钢研、国宏中宇主导的碳化硅产业化项目定制约 200 台碳化硅长晶炉,设备总采购金额约 3 亿元,同时露笑科技另外 2020 年 8 月公告计划与合肥合作投资 100 亿元建设第三代半导体产业园,从 SIC 设备切入衬底和外延等环节。

SIC 产业链以及国内外的主要玩家

二、 SIC 器件:10 年 20 倍成长,国内全面布局

1、 应用:新能源车充电桩和光伏等将率先采用

SiC 具有前述所说的各种优势,是高压/高功率/高频的功率器件相对理想的材料, 所以 SiC 功率器件在新能源车、充电桩、新能源发电的光伏风电等这些对效率、节能和损耗等指标比较看重的领域,具有明显的发展前景。

高频低压用 Si-IGBT,高频高压用 SiC MOS,电压功率不大但是高频则用GaN。当低频、高压的情况下用 Si 的 IGBT 是最好,如果稍稍高频但是电压不是很高,功率不是很高的情况下,用 Si 的 MOSFET 是最好。如果既是高频又是高压的情况下,用 SiC 的 MOSFET 最好。电压不需要很大,功率不需要很大,但是频率需要很高,这种情况下用 GaN 效果最佳。

SIC 器件的主要应用领域

以新能源车中应用 SIC MOS 为例,根据 Cree 提供的测算: 将纯电动车 BEV逆变器中的功率组件改成 SIC 时, 大概可以减少整车功耗 5%-10%;这样可以提升续航能力,或者减少动力电池成本。

SIC MOS 多种优势带动电动车续航力提升

同时 SIC MOS 在快充充电桩等领域也将大有可为。快速充电桩是将外部交流电,透过 IGBT 或者 SIC MOS 转变为直流电, 然后直接对新能源汽车电池进行充电,对于损耗和其自身占用体积问题也很敏感,因此不考虑成本,SIC MOS比 IGBT 更有前景和需求,由于目前 SIC 的成本目前是 Si 的 4-5 倍,因此会在高功率规格的快速充电桩首先导入。在光伏领域,高效、高功率密度、高可靠和低成本是光伏逆变器未来的发展趋势,因此基于性能更优异的 SIC 材料的光伏逆变器也将是未来重要的应用趋势。

2019 年各个领域的 SiC 模块产品推出情况

SIC 肖特基二极管的应用比传统的肖特基二极管同样有优势。碳化硅肖特基二极管相比于传统的硅快恢复二极管(SiFRD),具有理想的反向恢复特性。在器件从正向导通向反向阻断转换时,几乎没有反向恢复电流,反向恢复时间小于 20ns,因此碳化硅肖特基二极管可以工作在更高的频率,在相同频率下具有更高的效率。

另一个重要的特点是碳化硅肖特基二极管具有正的温度系数,随着温度的上升电阻也逐渐上升,这使得 SIC 肖特基二极管非常适合并联实用,增加了系统的安全性和可靠性。总结来看,SIC 肖特基二极管具有的特点如下:1)几乎无开关损耗;2)更高的开关频率;3)更高的效率;4)更高的工作温度;5)正的温度系数,适合于并联工作;6)开关特性几乎与温度无关。

根据 CASA 的统计,业内反应 SiC SBD 实际的批量采购成交价已经降至 1元/A 以下,耐压 600-650V 的产品业内批量采购价约为 0.6 元/A,而耐压 1200V的产品业内批量采购价约为 1 元/A。

2018-2019 年不同制造商 SiC SBD 产品价格对比 单位(元/A)

如上表所示,2019 年部分 SIC 肖特基二极管产品价格实现了 20%-35%的降幅,SIC 二极管价格的持续降低以及和 Si 二极管价差的缩小将进一步促进 SIC 二极管的应用。

2、 门槛:SIC 器件的壁垒和难点

SIC 难度大部分集中在 SIC 晶片的长晶和衬底制作方面,但是要做成器件,也有一些自身的难点,主要包括:

1、外延工艺效率低:碳化硅的气相同质外延一般要在 1500℃以上的高温下进行。由于有升华的问题,温度不能太高,一般不能超过 1800℃,因而生长速率较低。液相外延温度较低、速率较高,但产量较低 。

2、 欧姆接触的制作:欧姆接触是器件器件制作中十分重要的工艺之一,要形成好的碳化硅的欧姆接触在实际中还是有较大难度;

3、配套材料的耐高温:碳化硅芯片本身是耐高温的,但与其配套的材料就不见得能够耐得住 600℃以上的温度。所以整体工作温度的提高,需要不断的进行配套材料方面创新。

SIC 的优异性能大家认识的较早,之所以最近几年才有较好的进展主要是因为 SIC 片和 SIC 器件两个方面相比传统的功率器件均有一些难点,器件生产的高难度高成本加上碳化硅片制造的高难度(后面会提及),两者互为循环,一定程度上制约了过去几年 SIC 应用的推广速度,我们认为随着产业链逐渐成熟,SIC正处于爆发的前夜,拐点渐行渐近。

3、 空间&增速:SIC 器件未来 5-10 年复合 40%增长

IHS 预计未来 5-10 年 SIC 器件复合增速 40%:根据 IHSMarkit 数据,2018年碳化硅功率器件市场规模约 3.9 亿美元,受新能源汽车庞大需求的驱动,以及光伏风电和充电桩等领域对于效率和功耗要求提升,预计到 2027 年碳化硅功率器件的市场规模将超过 100 亿美元,18-27 年 9 年的复合增速接近 40%。

SiC 功率器件市场规模预测

渗透率角度测算 SIC MOS 器件市场空间:(SIC MOS 只是 SIC 器件的一种)SIC MOS 器件的下游和 IGBT 重合度较大,因此,驱动 IGBT 行业空间高成长驱动因素如车载、充电桩、工控、光伏风电以及家电市场,也都是 SIC MOS 功率器件将来要涉足的领域;根据我们之前系列行业报告的大致测算,2019 年 IGBT 全球 58 亿美金,中国 22 亿美金空间,在车载和充电桩和工控光伏风电等的带动下,预计 2025 年 IGBT 全球 120 亿美金,中国 60 亿美金。

SiC 功率器件在电动车里的渗透时间预测

SIC MOS 器件的渗透率取决于其成本下降和产业链成熟的速度,根据英飞凌和国内相关公司调研和产业里的专家的判断来看,SIC MOS 渗透 IGBT 的拐点可能在 2024 年附近。预计 2025 年全球渗透率 25%,则全球有 30 亿美金 SIC MOS 器件市场,中国按照 20%渗透率 2025 年则有 12 亿美金的 SIC MOS 空间。即不考虑SIC SBD 和其他 SIC 功率器件,仅测算替代 IGBT 那部分的 SIC MOS 市场预计2025 年全球 30 亿美金,相对 2019 年不到 4 亿美金有超过 7 倍成长,且 2025-2030年增速延续。

4、 格局:SIC 器件的竞争格局

目前,碳化硅器件市场还是以国外的传统功率龙头公司为主,2017 年全球市场份额占比前三的是科锐,罗姆和意法半导体,其中 CREE 从 SIC 上游材料切入到了 SIC 器件,相当于其拥有了从上游 SIC 片到下游 SIC 器件的产业链一体化能力。

2017 年 SIC 器件和模块市场份额

国内的企业均处于初创期或者刚刚介入 SIC 领域,包括传统的功率器件厂商华润微、捷捷微电、扬杰科技,从传统的硅基 MOSFET、晶闸管、二极管等切入 SIC 领域,IGBT 厂商斯达半导、比亚迪半导体等,但国内当前的 SIC 器件营收规模都比较小(扬杰科技最新披露 SIC 营收 2020 年上半年 19.28 万元左右);

未上市公司和单位中做的较好的有前面产业链总结中提到的一些,包括:

泰科天润:可以量产 SiC SBD,产品涵盖 600V/5A~50A、1200V/5A~50A 和1700V/10A 系列;并且早在 2015 年,泰科天润就宣布推出了一款高功率碳化硅肖特基二极管产品,是从事 SIC 器件的较纯正的公司;

中电科 55 所:国内从 4-6 寸碳化硅外延生长、芯片设计与制造、模块封装实现全产业链的单位;

深圳基本半导体:成立于 2016 年,由清华大学、浙江大学、剑桥大学等国内外知名高校博士团队创立,专注于 SIC 功率器件,也是深圳第三代半导体研究院发起单位之一,目前已经开始推出其 1200V 的 SiC MOSFET 产品。

三、SIC 晶片:高成长高壁垒,国产奋起直追

1、 成长分析

如前分析所述,碳化硅晶片主要用来做成高压功率器件和高频功率器件:SIC片主要分为两种类型:导电型的 SIC 晶片经过 SIC 外延后制作高压功率器件;半绝缘型的 SIC 晶片经过 GaN 外延后制 5G 射频器件(特别是 PA);

SiC 晶片产业链

碳化硅晶片主要用于大功率和高频功率器件:2018 年氮化镓射频器件全球市场规模约 4.2 亿美元(约 28 亿元人民币),随着 5G 通讯网络的推进,氮化镓射频器件市场将迅速扩大,Yole 预计到 2023 年,全球射频氮化镓器件市场规模将达到 13 亿美元(约 91 亿元人民币);继续引用前面 IHS 的预测,则 SIC功率器件将由 2019 年的 4.5 亿美元到 2025 年接近 30 亿美元。

SIC 和 GaN 功率器件市场规模预测

第三代半导体 GaN 在高频射频领域的市场规模:根据 Yole 的数据,2017 年氮化镓射频市场规模为 4 亿美元,将于 2023 年增长至接近 13 亿美元,复合增速为 22%,下游应用结构整体保持稳定,以通讯与军工为主,二者合计占比约为 80%。而整体射频器件的市场空间在 2018-2025 在 8%左右,GaN 射频器件增速远远高于射频器件整体市场的增长。

射频器件整体市场规模增长预测

导电型碳化硅单晶衬底材料是制造碳化硅功率半导体器件的基材,根据中国宽禁带功率半导体及应用产业联盟的测算:

2017-2020 年市场需求:2017 年 4 英寸 10 万片、6 英寸 1.5 万片→预计到 2020年 4 英寸保持 10 万片、6 英寸超过 8 万片。

2020-2025 年市场需求:4 英寸逐步从 10 万片市场减少到 5 万片,6 英寸晶圆将从 8 万片增长到 20 万片;

2025~2030 年:4 英寸晶圆逐渐退出市场,6 英寸晶圆将增长至 40 万片。

导电型碳化硅衬底市场规模(万片)

半绝缘碳化硅具备高电阻的同时可以承受更高的频率,主要应用在高频射频器件;同样根据中国宽禁带功率半导体及应用产业联盟的测算:

半绝缘碳化硅衬底市场规模(万片)

2017 年市场需求:全球半绝缘碳化硅晶片的市场需求约 4 万片;2020 年:4英寸半绝缘 SIC 维持 4 万片、6 英寸半绝缘 SIC 晶片 5 万片;

2025 年市场需求:预计 4 英寸半绝缘到 2 万片、6 英寸到 10 万片;

2025-2030 年市场需求:4 英寸半绝缘衬底逐渐退出市场,而 6 英寸需求到 20万片。

整体 SIC 晶片全球市场空间预计从 2020 的 30 亿 RMB 增长至 2027年 150 亿元 RMB,作为对比,2018 年全球硅片市场 90 亿美元,国内硅片市场约130 亿元(近 8 年复合增长 5%-7%)。

2、 壁垒分析

SIC 晶片的壁垒较高,主要体现在:

SIC 晶片的核心参数包括微管密度、位错密度、电阻率、翘曲度、表面粗糙度等。在密闭高温腔体内进行原子有序排列并完成晶体生长、同时控制参数指标是复杂的系统工程,将生长好的晶体加工成可以满足半导体器件制造所需晶片又涉及一系列高难度工艺调控;随着碳化硅晶体尺寸的增大及产品参数要求的提高,生产参数的定制化设定和动态控制难度会进一步提升。因此,稳定量产各项性能参数指标波动幅度较低的高品质碳化硅晶片的技术难度很大,主要体现在下面几个方面:

1、精确调控温度:碳化硅晶体需要在 2,000℃以上的高温环境中生长,且在生产中需要精确调控生长温度,控制难度极大;

2、容易产生多晶型杂质:碳化硅存在 200 多种晶体结构类型,其中六方结构的 4H 型(4H-SiC) 等少数几种晶体结构的单晶型碳化硅才是所需的半导体材料,在晶体生长过程中需要精确控制硅碳比、生长温度梯度、晶体生长速率以及气流气压等参数,否则容易产生多晶型夹杂,导致产出的晶体不合格;

3、 晶体扩径难度大:气相传输法下,碳化硅晶体生长的扩径技术难度极大,随着晶体尺寸的扩大,其生长难度工艺呈几何级增长;

4、 硬度极大难切割:碳化硅硬度与金刚石接近,切割、研磨、抛光技术难度大, 工艺水平的提高需要长期的研发积累;

3、 竞争分析

目前,碳化硅晶片产业格局呈现美国全球独大的特点。以导电型产品为例,2018 年美国占有全球碳化硅晶片产量的 70%以上,仅 CREE 公司就占据60%以上市场份额,剩余份额大部分被日本和欧洲的其他碳化硅企业占据。

2018 年导电型碳化硅晶片厂商市场占有率

由于碳化硅材料特殊的物理性质,其晶体生长、晶体切割、 晶片加工等环节的技术和工艺要求高,需要长期投入和深耕才能形成产业化生产能力,行业门槛很高。

后进入的碳化硅晶片生产商在短期内形成规模化供应能力存在较大难度,市场供给仍主要依靠现有晶片生产商扩大自身生产能力,国内碳化硅晶片供给不足的局面预计仍将维持一段时间。

行业内各公司不同尺寸 SIC 晶片的推出对比

4、 价值分析

上游 SIC 晶片主要用于 SIC 功率器件和 5G 高频射频器件,未来 10 年市场空间随着下游 SIC 功率器件+高频射频器件的增长而增长,我们预计将从 2020 年30 亿 RMB 到 2027 年接近 150 亿 RMB;

行业高增长+国产替代+高壁垒:天科合达/山东天岳可简单类比于 SIC 晶片领域的沪硅产业,而且传统硅片分布在日韩美五个巨头,而 SIC 晶片龙头 70%+的份额都在美国 CREE 和 II-VI 等公司,国产化也更迫切;在过去十年下游半导体的成长中,国内上游硅片商参与的有限;而这一次,未来 10 年的 SIC 器件和5G 高频射频器件中,国内的 SIC 晶片龙头将积极参与其中,行业爆发增长和国产化同时进行,可持续享受较高估值。

智东西认为 ,半导体材料目前经历了三个发展阶段,第一代的硅(Si)、锗(Ge);第二代开始由2种以上元素组成化合物半导体,如砷化镓(GaAs)、磷化铟 (InP);以及第三代的碳化硅(SiC)、氮化镓(GaN)等宽禁带材料。碳化硅具备低导通电阻、高切换频率、耐高温与耐高压等优势, 在新能源车、光伏风电、不间断电源、家电工控等有广阔的应用前景。 虽然成本目前仍然是制约碳化硅产业链发展的一大重要阻碍,但随着国内外相关产业的发展、成本不断降低,产业的发展爆发点降至。

相关问答

碳化硅半导体材料?

碳化硅是一种半导体材料,碳化硅(SiC)由碳(C)原子和硅(Si)原子组成,密度是3.2g/cm3,天然碳化硅非常罕见,主要通过人工合成。其晶体结构具有同质多型体的...碳...

第三代半导体碳化硅龙头股-股票知识问答-我爱卡

[回答]第三代半导体碳化硅股票龙头有以下这类:1.三安光电。它的股票代码是:002617。2.露笑科技。它的股票代码是:600703。3.智光电气。它的股票代码是:002...

半导体碳化硅的生产流程?

高温煅烧后的炉料从外到内分别是:未反应料(在炉中起保温作用)、氧碳化硅羼(半反应料,主要成分是C与SiO。)、粘结物层(是粘结很紧的物料层,主要成分是C、SiO2、...

第三代半导体碳化硅材料都需要哪些化学物质?

第三代半导体碳化硅材料的制造需要多种化学物质,其中包括:硅:硅是制造碳化硅的主要原料之一。碳:碳是制造碳化硅的另一个重要原料。氯气:氯气是用于将硅和碳...

碳化硅半导体器件随反向电场增加,载流子达到饱和漂移速度,为什么还会因动能继续增大而产生雪崩击穿?

半导体的核心在于pn结,pn结是很薄的区域,之所以导通在于,正向电场下,p粒子和n粒子会相向而行,当pn的正负粒子浓度到达一定程度,就会表现出导通性质,这个区域叫耗...

碳化硅衬底和外延片的区别?

碳化硅衬底和外延片都是半导体器件制造中的重要材料,但它们在制备工艺、物理性质和用途等方面存在差异。1.制备工艺:碳化硅衬底一般是通过用丙烷氧化法在高...

硅基半导体材料?

是以硅材料为基础发展起来的新型材料。包括绝缘层上的硅材料、锗硅材料、多孔硅、微晶硅以及以硅为基底异质外延其他化合物半导体材料等。第一代半导体以硅(S...

碳化硅耗电吗?

耗电量大,平均每吨耗电9000度碳化硅是一种优良的磨料及优异的功能材料,在自然界几乎不存在,工业上应用的碳化硅是一种人造材料。工业方法生产碳化硅,通常是...

sic半导体国内公司排名?

三安光电三安光电股份有限公司是国家发改委批准的“国家高技术产业化示范工程”、国家科技部及信息产业部认定的“半导体照明工程龙头企业”,主要从事全色系...

大神们!麻烦回答一下碳化硅效果怎么样?拜托了帮个忙大侠们,求解

[回答]碳化硅主要有四大应用领域,即:功能陶瓷、耐火材料、磨料及冶金原料。碳化硅粗料已能大量供应,不能算高新技术产品,而技术含量高的纳米级碳化硅粉体...