小科普|半导体芯片工艺中的掺杂--扩散和离子注入
前面我们聊了半导体的光刻工艺,今天我们来聊聊半导体器件的掺杂。就像做饭一样,需要放入各种调料才能做出色香味俱全,放多了会咸,放少了不入味儿;掺杂就相当于半导体中“添油加醋”的过程和目的。
掺杂,是将一定数量的杂质掺入到半导体材料的工艺,是为了改变半导体材料的电学特性,从而得到所需的电学参数。我们也经常会听到通过改善哪儿哪儿的掺杂浓度来优化某些性能的说法。
掺杂的方法主要有扩散和离子注入,两种方法在分立器件或集成电路中都有用得到,并且两者可以说是互补的,比如说,扩散可应用于形成深结,离子注入可形成浅结。
下面的示意图是扩散和离子注入,主要是掺杂浓度的分布有些不同:
下面我们就分别来聊聊扩散和离子注入这两种掺杂方式。
一、扩散
杂质扩散一般是将半导体晶片放入精确控制的高温石英管炉中,通过带有需扩散杂质的混合气体而完成,扩散进入半导体的杂质原子数目和混合气体的杂质分压有关。对于硅的扩散而言,常用的温度范围一般在800℃~1200℃,硼是最常用的p型杂质,砷和磷是最常用的n型杂质。这三种元素在硅中的固溶度都比较高,采用的掺入形式有:固相源(如BN、As2O3、P2O5)、液相源(BBr3、AsAl和POCl3)以及汽相源(B2H6、AsH3和PH3),这三种形式之中,液相源使用得最为广泛,下图是液相源石英管炉的结构图:
通过氧化反应将磷还原出来并扩散到硅中,而生成的Cl2则被排出。涉及到的反应方程式如下:
4POCl3+3O2→2P2O3+6Cl2
2P2O5+5Si→4P+5SiO3
杂质在半导体中扩散我们可以看成是杂质原子在晶格中以空位或间隙原子形式进行移动。下面我们介绍两种扩散机制:替代式扩散机制和填隙式扩散机制。
■替代式扩散机制
空心圆表示在晶格平衡位置的基质原子,红色实心圆表示杂质原子。在高温下,晶格原子在格点平衡位置附近震动,基质原子有一定的几率获得足够的能量从而脱离格点成为间隙原子,产生一个空位,此时邻近的杂质原子就可以占据这个空位,这就是替代式扩散,也叫空位扩散。
■填隙式扩散机制
如图,如果间隙杂质原子从一个位置运动到另一个位置而且还不占据格点,我们叫这种为填隙式扩散,一般在杂质原子相对于基质原子较小时采用这种运动。
杂质原子的扩散分布和它初始的条件及边界有关。这里简单介绍两种扩散方法,一种是恒定源扩散,从名字我们就知道整个扩散过程杂质源的表面浓度都是保持恒定的;另一种叫有限源扩散,即将一定量的杂质淀积在半导体的表面,接着向半导体内扩散,过程中不再施加任何杂质源。
一般我们在集成电路工艺中采用两步扩散方法:首先在恒定源扩散条件下形成预淀积扩散层,然后再在有限源扩散的条件下进行主扩散,能够更好更精确地得到扩散分布。
扩散工艺结果我们一般会通过特殊的测试方法来评估,有下面三种:结深法、薄层电阻法(四探针方法测)和扩散层的杂质分布(电容电压法,二次离子质谱法SIMS)。
以上只是简单地聊了下扩散的概念以及几种扩散机制和方法,都是比较浅的,深入的那些大家有兴趣可以区深挖一下。下面我们再来聊聊离子注入~
二、离子注入
开篇我们给出了扩散和离子注入的两张图,如果说扩散比较温柔的话,那么离子注入则有点暴力了。从下图(C代表掺杂浓度,x是半导体距离表面的深度)中我们可以看到,掺杂分布再半导体内呈现峰值分布,分布的形状主要取决于掺杂离子的质量以及注入时离子所带有的能量。
离子注入是将具有一定能量的带电离子掺入到硅中,注入能量再1keV到1MeV之间,对应的平均离子分布深度范围是10nm到10um之间。相对于扩散工艺,离子注入的主要好处是能够使得杂质掺入量得到较为精准的控制,保持好的重复性,同时离子注入的加工工艺温度比扩散低。
注入相关的工艺一般有下面几种:多次注入、掩蔽层、倾斜角注入、高能注入以及大电流注入等。
■离子注入的几点用途作用:
①多次注入来形成特殊分布;
②选择适当掩蔽材料和厚度,来阻挡一定比例的入射离子进入衬底;
③倾斜角度注入,来形成超浅结;
④高能注入以形成埋层;
⑤大电流注入用于扩散技术中的预淀积、阈值电压调整以及对SOI应用而言形成的绝缘层(SOI:Silicon-On-Insulator,绝缘衬底上的硅,该技术是在顶层硅和背衬底之间引入了一层埋氧化层)。
■下面是一个中等能量离子注入系统的框架图:
离子源通过加热分解源气体,使其成为带电离子,加上约40KV的电压,引导这些带电离子移出离子源腔体并进入磁分析器。我们可以通过设定磁分析器的磁场强弱来使得符合要求的离子通过。被选中的离子进入加速管,离子在高压下被加速,从而获得注入时所需的能量。狭缝则是用来确保离子束不会走偏。注入系统内的气压维持在低于十的负四次方帕以下,使得由气体分子引起的离子散射降至最低,再利用静电偏转板使这些离子束扫描整个晶片表面并注入半导体衬底。
高能离子在进入半导体之后,最后会停在晶格内的一定深度。离子注入带来的负面影响主要是由于离子碰撞而导致的半导体晶格断裂或者损伤,所以必须在后续的流程中进行退火处理,来消除这种损伤。
由于高能离子注入之后带来的晶格损伤,会使得半导体的迁移率和寿命等参数受到较为严重的影响,同时,在注入时大部分的离子并不是在替位的位置,为了激活注入离子并恢复迁移率等相关参数,必须在适当的时间和温度下将半导体退火。
来源:功率半导体那些事儿
*免责声明:本文由作者原创。文章内容系作者个人观点,泰科天润半导体转载仅为了传达一种不同的观点,不代表泰科天润半导体对该观点赞同或支持,如果有任何异议,欢迎联系泰科天润半导体。
从能级的角度来看半导体的掺杂
半导体掺杂技术
半导体的常用掺杂技术主要有两种,即高温(热)扩散和离子注入。
掺入的杂质主要有两类:
第一类是提供载流子的受主杂质或施主杂质(如Si中的B、P、As);
第二类是产生复合中心的重金属杂质(如Si中的Au)。
(1)热扩散技术
对于施主或受主杂质的掺入,就需要进行较高温度的热扩散。因为施主或受主杂质原子的半径一般都比较大,它们要直接进入半导体晶格的间隙中去是很困难的;只有当晶体中出现有晶格空位后,杂质原子才有可能进去占据这些空位,并从而进入到晶体。
为了让晶体中产生出大量的晶格空位,所以,就必须对晶体加热,让晶体原子的热运动加剧,以使得某些原子获得足够高的能量而离开晶格位置、留下空位(与此同时也产生出等量的间隙原子,空位和间隙原子统称为热缺陷),也因此原子的扩散系数随着温度的升高而指数式增大。对于Si晶体,要在其中形成大量的空位,所需要的温度大致为1000℃左右,这也就是热扩散的温度。
(2)离子注入技术
为了使施主或受主杂质原子能够进入到晶体中去,需要首先把杂质原子电离成离子,并用强电场加速、让这些离子获得很高的动能,然后再直接轰击晶体、并“挤”进到里面去;这就是“注入”。当然,采用离子注入技术掺杂时,必然会产生出许多晶格缺陷,同时也会有一些原子处在间隙中。所以,半导体在经过离子注入以后,还必须要进行所谓退火处理,以消除这些缺陷和使杂质“激活"。
(3)与掺杂有关的问题
①Si的热氧化技术: 因为当Si表面原子与氧原子结合成一层SiO2后,若要进一步增厚氧化层的话,那么就必须要让外面的氧原子扩散穿过已形成的氧化层、并与下面的Si原子结合,而SiO2膜是非晶体,氧原子在其中的扩散速度很小,因此,往往要通过加热来提高氧原子的热运动能量,使得能够比较容易地进入到氧化层中去,这就是热氧化。所以,Si的热氧化温度一般也比较高(~1000℃左右)。
②杂质的激活: 因为施主或受主杂质原子要能够提供载流子,就必须处于替代Si原子的位置上。这样才有多余的或者缺少的价电子、以产生载流子。所以在半导体中,即使掺入了施主或受主杂质,但是如果这些杂质原子没有进入到替代位置,那么它们也将起不到提供载流子的作用。为此,就还需要进行一定的热处理步骤——激活退火。
③Au、Pt等重金属杂质原子的扩散: 重金属杂质与施主或受主杂质不同,因为重金属杂质的原子半径很小,即使在较低温度下也能够很容易地通过晶格间隙而进入到半导体中去,所以扩散的温度一般较低。例如扩散Au,在700℃下,只要数分钟,Au原子即可分布到整个Si片。
从能级的角度来看半导体的掺杂
半导体一般由锗和硅两种材料构成,而由于我们生活的环境的温度不是绝对零度,所有会有本征激发(电子脱离质子的吸引力而转变成为自由电子 如下图),这就是温度可以改变半导体的特性。那么我就要引入能级了。
本征激发就是将电子从价带激发到导带去,而禁带就是最外层轨道杂化使得本来处于同一轨道的电子分开成两个轨道,轨道之间就是禁带。而内层轨道形成价带,无能量进入时充满电子,外层轨道形成导带,无能量进入时无电子。我以前不能理解能级,但是现在懂了,希望可以帮到你。
而为什么掺杂可以帮助半导体提高他的导电性。
以N型半导体来举例子。
半导体掺杂了五价的元素,比如磷形成N型半导体,那么便会多出一个电子,多出来的电子就成为了施主能级,他们极易成为自由电子,上面说了自由电子形成导带,所以施主能级中的电子极易转移到导带中。由于导带中自由电子增多,所以导电性增加了。
然后就是P型半导体
半导体掺杂了三价元素,比如硼就会形成P型半导体,那么由于硼的电子只有三个,便会多出一个空位,这些空位(空穴)形成了受主能级,上面由本征激发的电子也就是价带中的电子不会那么容易成为自由电子,而是被这些空位所吸附,也就是价带中的电子转移到了受主能级,电子从受主能级中也能激发到导带,形成自由电子。
由于空穴的数量增多导致自由电子的转移变得“通畅”(也可以理解为停车,车位更多的地方,来往的车辆也就越多),这就导致了掺杂后的半导体导电性增加。
总结:
自由电子形成导带;
未激发或者在电子对中的电子和空穴形成价带;
掺入五价元素而形成的多余但是没有激发的电子形成施主能级;
掺入三价元素而形成的多余的空穴形成受主能级。
“材料界”(微信号: Material-World)最具影响力和最受欢迎的各类新材料微信公众号之一!
相关问答
半导体掺杂过程原理?
掺杂的原理是基于半导体材料的本征缺陷。半导体材料中存在着大量的本征缺陷,如空穴、电子、空位和杂质原子等。这些缺陷会影响半导体材料的导电性能。当掺入杂...
半导体的掺杂特性?
半导体掺杂半导体之所以能广泛应用在今日的数位世界中,凭借的就是其能借由在其晶格中植入杂质改变其电性,这个过程称之为掺杂。特性和本质半导体的价电子比...
我在Si中掺杂一些B做成P型半导体,然后再从Si中掺杂P元素造成...
[最佳回答]看看对你有没有用.
如何在半导体材料里实现有效掺杂?-盖德问答-化工人互助问答社区
做量子点的话,还是很好掺的。但是你们做器件应该是涂膜,这个不是很清楚很多牛逼的掺杂是模拟计算出来的。。。建议看看关于计算的文章,我们通常的...
半导体为什么要掺杂?-pw6d97de0K的回答-懂得
半导体“掺杂”的目的是什么?相信你一定很想弄清楚答案!第二次世界大战期间,在研究半导体材料上,美国投入了巨大的人力和资金。当时科学家把方铅矿...
半导体晶体管PN结掺杂疑惑?
半导体的掺杂,以硅为例。一般掺入三价的原子(如硼)使之成为P型半导体,或掺入五价的原子(如磷)使之成为N型半导体。从导电原理上讲,分别掺入低于三价的原...
关于半导体掺杂浓度与PN结耗尽层宽度问题扩散是由于浓度差引...
[最佳回答]概念上的问题首先,没有扩散能量这个概念,扩散是一种自然进行的动作,最终会达到动态平衡。而耗尽层宽度就取决于达到动态平衡状态的掺杂浓度。而耗...
为什么硅要进行掺杂?
Si的价电子共有4个,要达到8电子结构还需要4个电子。如果引入少量其它元素原子替代硅就够成了掺杂:1、引入的元素原子价电子比硅少,如引入Mg、Al、Zn、Ga等,...
掺杂原理?
是指将掺杂原子加入到材料中,以改变该材料的电学、磁学、光学等性质。这是因为掺杂原子的加入可以改变晶体中的电荷密度和能带结构,从而影响其物理和化学性质...
硅掺入磷的过程?
1、硅为半导体的主体材料,其原子最外层是四个电子。渗入少量磷后,由于周围的硅只需要四个外来电子与其组成共价键,所以就余出一个自由电子。2、一只二极管没...