化合物半导体 一文看懂化合物半导体,机会在哪里?

小编 2024-11-24 开发者社区 23 0

一文看懂化合物半导体,机会在哪里?

来源:内容来自「国盛电子团队」,作者:湘评科技,谢谢。

半导体材料可分为单质半导体及化合物半导体两类,前者如硅(Si)、锗(Ge)等所形成的半导体,后者为砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等化合物形成。半导体在过去主要经历了三代变化,砷化镓(GaAs)、氮化镓(GaN)和碳化硅(SiC)半导体分别作为第二代和第三代半导体的代表,相比第一代半导体高频性能、高温性能优异很多,制造成本更为高昂,可谓是半导体中的新贵。

三大化合物半导体材料中,GaAs占大头,主要用于通讯领域,全球市场容量接近百亿美元, 主要受益通信射频芯片尤其是PA升级驱动;GaN大功率、高频性能更出色,主要应用于军事领域,目前市场容量不到10亿美元,随着成本下降有望迎来广泛应用;SiC主要作为高功率半导体材料应用于汽车以及工业电力电子,在大功率转换应用中具有巨大的优势。

超越摩尔: 光学、射频、功率等模拟IC持续发展

摩尔定律放缓,集成电路发展分化。 现在集成电路的发展主要有两个反向:More Moore (深度摩尔)和More than Moore (超越摩尔)。摩尔定律是指集成电路大概18个月的时间里,在同样的面积上,晶体管数量会增加一倍,但是价格下降一半。但是在28nm时遇到了阻碍,其晶体管数量虽然增加一倍,但是价格没有下降一半。More Moore (深度摩尔)是指继续提升制程节点技术,进入后摩尔时期。与此同时,More than Moore (超越摩尔)被人们提出,此方案以实现更多应用为导向,专注于在单片IC上加入越来越多的功能。

模拟IC更适合在More than Moore (超越摩尔)道路。 先进制程与高集成度可以使数字IC具有更好的性能和更低的成本,但是这不适用于模拟IC。射频电路等模拟电路往往需要使用大尺寸电感,先进制程的集成度影响并不大,同时还会使得成本升高;先进制程往往用于低功耗环境,但是射频、电源等模拟IC会用于高频、高功耗领域,先进制程对性能甚至有负面影响;低电源和电压下模拟电路的线性度也难以保证。PA主要技术是GaAs,而开关主要技术是SOI,More than Moore (超越摩尔)可以实现使用不同技术和工艺的组合,为模拟IC的进一步发展提供了道路。

第三代半导体适应更多应用场景。 硅基半导体具有耐高温、抗辐射性能好、制作方便、稳定性好。可靠度高等特点,使得99%以上集成电路都是以硅为材料制作的。但是硅基半导体不适合在高频、高功率领域使用。2G、3G 和 4G等时代PA主要材料是 GaAs,但是进入5G时代以后,主要材料是GaN。5G的频率较高,其跳跃式的反射特性使其传输距离较短。由于毫米波对于功率的要求非常高,而GaN具有体积小功率大的特性,是目前最适合5G时代的PA材料。SiC和GaN等第三代半导体将更能适应未来的应用需求。

模拟IC关注电压电流控制、失真率、功耗、可靠性和稳定性,设计者需要考虑各种元器件对模拟电路性能的影响,设计难度较高。 数字电路追求运算速度与成本,多采用CMOS工艺,多年来一直沿着摩尔定律发展,不断采用地更高效率的算法来处理数字信号,或者利用新工艺提高集成度降低成本。而过高的工艺节点技术往往不利于实现模拟IC实现低失真和高信噪比或者输出高电压或者大电流来驱动其他元件的要求,因此模拟IC对节点演进需求相对较低远大于数字IC。模拟芯片的生命周期也较长,一般长达10年及以上,如仙童公司在1968年推出的运放μA741卖了近五十年还有客户在用。

目前数字IC多采用CMOS工艺,而模拟IC采用的工艺种类较多,不受摩尔定律束缚。 模拟IC的制造工艺有Bipolar工艺、CMOS工艺和BiCMOS工艺。在高频领域,SiGe工艺、GaAs工艺和SOI工艺还可以与Bipolar和BiCMOS工艺结合,实现更优异的性能。而在功率领域,SOI工艺和BCD(BiCMOS基础上集成DMOS等功率器件)工艺也有更好的表现。模拟IC应用广泛,使用环节也各不相同,因此制造工艺也会相应变化。

砷化镓(GaAs): 无线通信核心材料,受益5G大趋势

相较于第一代硅半导体,砷化镓具有高频、抗辐射、耐高温的特性,因此广泛应用在主流的商用无线通信、光通讯以及国防军工用途上。 无线通信的普及与硅在高频特性上的限制共同催生砷化镓材料脱颖而出,在无线通讯领域得到大规模应用。

基带和射频模块是完成3/4/5G蜂窝通讯功能的核心部件。射频模块一般由收发器和前端模组(PA、Switch、Filter)组成。其中砷化镓目前已经成为PA和Switch的主流材料。

4G/5G频段持续提升,驱动PA用量增长。 由于单颗PA芯片仅能处理固定频段的信号,所以蜂窝通讯频段的增加会显著提升智能手机单机PA消耗量。随着4G通讯的普及,移动通讯的频段由2010年的6个急速扩张到43个,5G时代更有有望提升至60以上。目前主流4G通信采用5频13模,平均使用7颗PA,4个射频开关器。

目前砷化镓龙头企业仍以IDM模式为主,包括美国Skyworks、Qorvo、Broadcom/Avago、Cree、德国Infineon等。 同时我们也注意到产业发展模式开始逐渐由IDM模式转为设计+代工生产,典型事件为代工比例持续提升、avago去年将科罗拉多厂出售给稳懋等。我们认为GaAs衬底和器件技术不断成熟和标准化,产品多样化、器件设计的价值显著,设计+制造的分工模式开始增加。

从Yole Development等第三方研究机构估算来看,2017年全球用于PA的GaAs 器件市场规模达到80-90亿美元, 大部分的市场份额集中于Skyworks、Qorvo、Avago 三大巨头。预计随着通信升级未来两年有望正式超过100亿美元。

同时应用市场决定无需60 nm线宽以下先进制程工艺,不追求最先进制程工艺是另外一个特点。化合物半导体面向射频、高电压大功率、光电子等领域,无需先进工艺。 GaAs和GaN器件以0.13、0.18μm以上工艺为主。Qorvo正在进行90nm工艺研发。此外由于受GaAs和SiC衬底尺寸限制,目前生产线基本全为4英寸和6英寸。以Qorvo为例,我们统计下来氮化镓制程基本线宽在0.25-0.50um,生产线以4英寸为主。

氮化镓&碳化硅: 高压高频优势显著

氮化镓(GaN)和碳化硅(SiC)并称为第三代半导体材料的双雄,由于性能不同,二者的应用领域也不相同。 由于氮化镓具有禁带宽度大、击穿电场高、饱和电子速率大、热导率高、化学性质稳定和抗辐射能力强等优点,成为高温、高频、大功率微波器件的首选材料之一。

氮化镓: 5G时代来临,射频应用前景广阔

目前氮化镓器件有三分之二应用于军工电子,如军事通讯、电子干扰、雷达等领域;在民用领域,氮化镓主要被应用于通讯基站、功率器件等领域。 氮化镓基站PA的功放效率较其他材料更高,因而能节省大量电能,且其可以几乎覆盖无线通讯的所有频段,功率密度大,能够减少基站体积和质量。

特色工艺代工厂崛起,分工大势所趋。 全球半导体分为IDM(Integrated Device Manufacture,集成电路制造)模式和垂直分工模式两种商业模式,老牌大厂由于历史原因,多为IDM模式。随着集成电路技术演进,摩尔定律逼近极限,各环节技术、资金壁垒日渐提高,传统IDM模式弊端凸显,新锐厂商多选择Fabless(无晶圆厂)模式,轻装追赶。同时英飞凌、TI、AMD等老牌大厂也逐渐将全部或部分制造、封测环节外包,转向Fab-Lite(轻晶圆厂)甚至Fabless模式。

氮化镓射频器件高速成长,复合增速23%,下游市场结构整体保持稳定。 研究机构Yole Development数据显示,2017年氮化镓射频市场规模为3.8亿美元,将于2023年增长至13亿美元,复合增速为22.9%。下游应用结构整体保持稳定,以通讯与军工为主,二者合计占比约为80%。

碳化硅: 功率器件核心材料,新能源汽车驱动成长

SiC主要用于大功率高频功率器件。 以SiC为材料的二极管、MOSFET、IGBT等器件未来有望在汽车电子领域取代Si。目前SiC半导体仍处于发展初期,晶圆生长过程中易出现材料的基面位错,以致SiC器件可靠性下降。另一方面,晶圆生长难度导致SiC材料价格昂贵,预计想要大规模得到应用仍需一段时期的技术改进。

Die Size和成本是碳化硅技术产业化的核心变量。 我们比较目前市场主流1200V硅基IGBT及碳化硅基MOSFET,可以发现SiC基MOSFET产品较Si基产品能够大幅减少Die Size,且表现性能更好。但是目前最大阻碍仍在于Wafer Cost,根据yole development测算,单片成本SiC比Si基产品高出7-8倍。

研究机构IHS预测到2025年SiC功率半导体的市场规模有望达到30亿美元。 在未来的10年内,SiC器件将开始大范围地应用于工业及电动汽车领域。纵观全球SiC主要市场,电力电子占据了2016-2017年最大的市场份额。该市场增长的主要驱动因素是由于电源供应和逆变器应用越来越多地使用SiC器件。

SiC近期产业化进度加速,上游产业链开始扩大规模和锁定货源。 我们根据整理CREE公告,可以发现近期碳化硅产业化进度开始加速,ST、英飞凌等中游厂商开始锁定上游晶圆货源:

2019年1月公告:CREE与ST签署一项为期多年的2.5亿美元规模的生产供应协议,Wolfspeed将会向ST供应150㎜SiC晶圆。

2018年10月公告:CREE宣布了一项价值8,500万美元的长期协议,将为一家未公布名称的“领先电力设备公司”生产和供应SiC晶圆。

2018年2月公告:Cree与英飞凌签订了1亿美元的长期供应协议,为其光伏逆变器、机器人、充电基础设施、工业电源、牵引和变速驱动器等产品提供SiC晶圆。

两大驱动力: 5G提速+汽车电气化

5G加速推进,射频市场有望高速成长 海外率先商用,5G提速预期强烈

海外5G率先商用,国内5G推进有望加速!4月3日,美国运营商Verizon宣布在部分地区推出5G服务;4月5日,韩国三大运营商宣布开始针对普通消费者的5G商用服务;4月10日,日本政府向四大运营商分配5G频段,预计明年春正式商用;我们认为,在海外5G积极推进商用的节奏下,国内5G有望加速。

随着5G的推广,从5G的建设需求来看,5G将会采取"宏站加小站"组网覆盖的模式,历次基站的升级,都会带来一轮原有基站改造和新基站建设潮。2017年我国4G广覆盖阶段基本结束,4G宏基站达到328万个。根据赛迪顾问预测,5G宏基站总数量将会是4G宏基站1.1~1.5倍,对应360万至492万5G宏基站。

于此同时在小站方面,毫米波高频段的小站覆盖范围是10~20m,应用于热点区域或更高容量业务场景,其数量保守估计将是宏站的2倍,由此我们预计5G小站将达到950万个。

氮化镓将占射频器件市场半壁江山

基站建设将是氮化镓市场成长的主要驱动力之一。 Yole development数据显示,2018年,基站端氮化镓射频器件市场规模不足2亿美元,预计到2023年,基站端氮化镓市场规模将超5亿美元。氮化镓射频器件市场整体将保持23%的复合增速,2023年市场规模有望达13亿美元。

氮化镓将占射频器件市场半壁江山。 在射频器件领域,目前LDMOS(横向扩散金属氧化物半导体)、GaAs(砷化镓)、GaN(氮化镓)三者占比相差不大,但据Yole development预测,至2025年,砷化镓市场份额基本维持不变的情况下,氮化镓有望替代大部分LDMOS份额,占据射频器件市场约50%的份额。

汽车电气化推动碳化硅市场快速成长 汽车半导体市场快速增长

汽车IC快速增长,成半导体增长亮点。根据IC Insights数据,预计2018年汽车IC增速可达18.5%,规模可达323亿美元。到 2021 年,汽车 IC 市场将会增长到 436 亿美元,2017 年到 2021 年之间的复合增长率为 12.5%,为复合增长率最高的细分市场模块,也是未来的主要驱动力之一。

汽车模拟IC增长强劲,实现对智能手机的超越。 智能手机的高速增长曾经是带动半导体市场增长的主要驱动力,如今汽车成为下一位选手。根据HIS数据,从体量上看,2015年汽车模拟IC市场将已经超过的智能手机市场,预计2018年汽车模拟IC市场规模可达102亿美元。与此同时,由于汽车市场增速高于其他子行业,其模拟IC销售占比也逐年增加。

环保需求持续驱动汽车电气化进程

环保节能需求推动汽车电气化,新能源汽车快速增长。由于各国政府对能源和环境问题高度重视,纷纷提出禁售燃油车计划,汽车电气化几乎是必然趋势。Katusa Research数据显示,中国,美国和德国将成为电动汽车的主要推广者,致使2040年电动汽车年均销售量可达6千万量。新能源汽车能够有效降低燃油消耗量,而新能源汽车需要用到大量的电源类IC(比如升降电压用的DC/DC),模拟IC行业可从中受益。

汽车硅含量持续提升,碳化硅市场显著受益

汽车电气化程度逐步加深,硅价值量持续增长。各车企纷纷推出新能源车,以实现汽车电动化的软替代,常见的新能源汽车包括混合动力汽车、插电式混合动力汽车、增程式电动汽车、纯电动汽车。随着电气化程度的提升,汽车半导体价值量也水涨船高。2018年中度混合动力汽车、插电式混合动力汽车和纯电动汽车单车半导体价值量分别达475、740和750美元,根据Strategy Analytics预测,2025年度混合动力汽车、插电式混合动力汽车和纯电动汽车销量分别可达到0.17亿、0.13亿、0.08亿,合计半导体市场规模可达237亿美元。

电动车市场将是碳化硅器件成长的主要驱动力。根据Yole development预测,未来几年新能源汽车、电机驱动、铁路对碳化硅市场增长影响较大,其中增量价值最高的为新能源汽车,包括汽车本身以及由此带动的各类基础设施建设。

汽车处于安全性考虑,需要包含各个子系统的稳压、静电保护、信号隔绝等需求,同时还需要众多与电力系统配套的功率半导体产品,包括充电器、电池管理、逆变器、次逆变器、DC/DC以及各种接口等。因此汽车电动化给功率半导体带来了更广阔的市场空间。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2066期内容,欢迎关注。

半导体行业观察

半导体第一垂直媒体

实时 专业 原创 深度

AI|台积电|华为|封测|晶圆|SIC|存储|IC

回复 投稿 ,看《如何成为“半导体行业观察”的一员 》

回复 搜索 ,还能轻松找到其他你感兴趣的文章!

化合物半导体技术综述

来源:内容来自「中国信通院」, 作者:邸绍岩,谢谢。

一、化合物半导体应用前景广阔,市场规模持续扩大

化合物半导体是由两种及以上元素构成的半导体材料,目前最常用的材料有GaAs、GaN以及SiC等,作为第二代和第三代半导体的主要代表,因其在高功率、高频率等方面特有的优势,在信息通信、光电应用以及新能源汽车等产业中有着不可替代的地位。

多年以来,世界各国始终对化合物半导体保持高度重视,出台相关政策支持本国产业的发展,2017年美国、德国、欧盟、日本等国家和组织启动了至少12项研发计划,总计投入研究经费达到6亿美元。借助各国政府的大力支持,自从1965年第一支GaAs晶体管诞生以来,化合物半导体器件的制造技术取得了快速的进步,为化合物半导体的应用提供了坚实的基础。目前,随着ALD(原子层淀积)技术的逐渐成熟,化合物半导体HMET结构以及MOSFET结构的器件质量以及可靠性得到了极大的提升,进一步提高了化合物半导体材料在高频高压应用领域的市场占有率。未来随着化合物半导体制造工艺的进一步提升,在逻辑应用方面取代传统硅材料,从而等效延续摩尔定律成为了化合物半导体更为长远的发展趋势。

作为化合物半导体最主要的应用市场,射频器件市场经历了2015年到2016年的缓慢发展,时至今日,随着5G基站更新换代以及设备小型化的巨大需求,全球射频功率器件市场在2016年到2022年间将以9.8%的复合年增长率快速增长。市场规模有望从2016年的15亿美元增长到2022年25亿美元1。此外,随着通信行业对器件性能的要求逐渐提高,GaN、GaAs等化合物半导体器件的优势逐渐显现,传统硅工艺器件逐渐被取代,预计到2025年,化合物半导体将占据射频器件市场份额的80%以上。

二、国外企业依然构成化合物半导体产业主体,我国已有所突破

化合物半导体产业链可主要分为晶圆制备、芯片设计、芯片制造以及芯片封测等环节,其中晶圆制备进一步细分为衬底制备和外延片制备两部分。当前,化合物半导体产业多以IDM模式为主,即单一厂商纵向覆盖芯片设计、芯片制造、到封装测试等多个环节。然而,随着衬底和器件制造技术的成熟和标准化,以及器件设计价值的提升,器件设计与制造分工的趋势日益明显。

GaAs半导体产业参与者多为Skyworks、Qorvo、Avago等国外IDM厂商。衬底制备、外延片方面,日本处于领先地位。晶圆制备方面,全球GaAs衬底出货量将保持较强的增长趋势,预计2023年年出货量将从目前的170万片上升到400万片2。当前,住友电工、Freiberger、日立电缆、以及ATX四家企业采用国际先进的液封直拉法(LEC)和垂直梯度凝固法(VGF),衬底直径最大可达6英寸,占据了90%以上的国际市场。国内企业如中科晶电、中科镓英等企业所制备的GaAs衬底普遍在2英寸到4英寸之间,部分企业仍采取较为落后的水平布里其曼法(HB),晶体质量较差。制造代工方面,目前制造产能主要分布在IDM厂商和代工厂中,且代工厂的市场占比正不断提高,其中台湾的稳懋占据GaAs晶圆代工市场三分之二以上。产品设计方面,射频器件由国外IDM厂商垄断,我国在光电器件领域具备一定竞争力,目前已占全球LED市场近20%的份额。

GaN技术的难点在于晶圆制备工艺,欧美日在此方面优势明显,我国则以军工应用为主,产能略有不足。由于将GaN晶体熔融所需气压极高,因此无法通过从熔融液中结晶的方法生长单晶,须采用外延技术生长GaN晶体来制备晶圆。目前最为主流的方法是氢化物气沉积法,住友电工、三菱化学等企业均采用此法,其中日本住友电工是全球最大GaN晶圆生产商,占据了90%以上的市场份额。我国在GaN晶圆制造方面已经有所突破,苏州纳维公司的2英寸衬底片年产能已达到1500片,4英寸衬底已推出产品,目前正在开展6英寸衬底片研发。GaN外延片根据衬底材料的不同,可分为基于蓝宝石、Si衬底、SiC以及GaN四种,分别用于LED、电力电子、射频以及激光器,其晶体质量依次提升,成本依次升高。

SiC产业格局呈现美欧日三足鼎立态势,美国产业优势显著,欧洲产业链完备,日本在设备和模块技术方面领先。SiC外延片需要根据耐压程度进行定制,因此目前仍然以IDM企业内部供应为主,占据外延市场的80%左右,主流技术为低压化学气相沉积(LPCVD)技术,未来随着器件加工技术的不断成熟,产品将趋于标准化,将有更多企业使用外部供应商产品,预计2020年其份额将超过50%。

三、光电器件、微波射频、电力电子是目前主要应用领域

光电器件方面 ,主要应用包括太阳电池、半导体照明、激光器和探测器等。基于GaAs的化合物半导体光伏电池有着比Si基光伏电池更高的效率和更好的耐温性;紫色激光器用于制造大容量光盘制造、医疗消毒、荧光激励光源等;蓝光、绿光、红光激光器实现激光电视显示;普通非增益GaN紫外探测器涉及导弹预警、卫星秘密通信、环境监测、化学生物探测等领域。

在微波射频方面 ,化合物半导体最主要的应用场景是射频功率放大器,在移动通信、导航设备、雷达电子对抗以及空间通信等系统中是最为核心的组成部分,其性能直接决定了手机等无线终端的通讯质量。在全球5G通信发展迅速的背景下,移动通讯功率放大器的需求量将呈现爆发式增长,其中,终端侧功率放大器将延续GaAs工艺,而在基站侧,传统的Si基LDMOS工艺将被有着更高承载功率、效率更具优势的GaN工艺所取代,以满足基站小型化的需求。

在功率器件方面 ,化合物半导体主要应用于高压开关器件,与传统的Si工艺器件相比,化合物半导体器件具有更高的功率密度、更低的能量损耗和更好的高温稳定性。目前600V以上的高端功率器件解决方案均采用SiC材料,相比传统Si基IGBT,能量损失可以降低50%。

四、总结

化合物半导体因其良好的高频高压特性,在固态光源、微波射频以及电力电子等方面有着不可替代的作用,未来随着化合物半导体技术的进一步成熟,其核心地位将愈发凸显,在摩尔定律即将走向终结的背景下,化合物半导体技术无疑为集成电路的发展开辟出一条全新的路径。

*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。

今天是《半导体行业观察》为您分享的第2138期内容,欢迎关注。

半导体行业观察

半导体第一垂直媒体

实时 专业 原创 深度

相关问答

化合物半导体产业特点?

速度高,介电常数小,导电性能好等速度高,介电常数小,导电性能好等

半导体的主要成分?_作业帮

[最佳回答]半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类.锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化...

哪些属于导体,半导体,绝缘体–960化工网问答

半导体材料有很多种,按化学成分可分为元素成孙谁地祖白全雷危间半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物...

半导体金属化合物的化学组成是什么的?

半导体是指常温下导电性能介于导体与绝缘体之间的材料。1、半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;...

AIN是重要的半导体材料,Ga(镓)、P、As都是形成化合物半导体...

[最佳回答](1)基态As原子核外电子排布式为1s22s22p63s23p63d104s24p3,含有4个能层,最高能级的电子排布式为4p3,和砷位于同一周期,且未成对电子数也相同的元素,...

半导体材料的种类有哪些?-159****0607的回答-懂得

提起半导体材料,大家就会自然地想到硅和锗。其实,半导体材料的种类是极其繁多的,不止是硅和锗。只不过硅和锗,特别是硅,是目前最重要、最常见的半导...

【Ga(镓)、P、As都是形成化合物半导体材料的重要元素.(1)基...

[最佳回答](1)基态As原子核外电子排布式为1s22s22p63s23p63d104s24p3,占据原子轨道数目为:1×4+3×3+5=18,最高能层的电子排布式为4s24p3,和砷位于同一周期,且...

有谁知道“超导磁浮”和“半导体”的意义?有急用!_作业帮

[最佳回答]是当某种金属处于极低温度(比如-269℃)的情况下,就会产生电阻为零的现象.给这种金属通电,电流就会毫无损耗地永久流动.如果把铌钛之类的超...超导...

【第ⅢA、ⅤA原元素组成的化合物GaN、GaP、GaAs等是人工合成...

[最佳回答]Ga原子是31号元素,Ga原子的电子排布式为1s22s22p63s23p63d104s24p1;GaN晶体结构与单晶硅相似,GaN属于原子晶体,每个Ga原子与4个N原子相连,与同一个G...

如上图,已知:①单质E可作为半导体材料;②化合物F是不能生成...

[最佳回答]如上图,已知:①单质E可作为半导体材料;②化合物F是不能生成盐的氧化物;③化合物I能溶于水呈酸性,它能够跟氧化物A起反应。据此,请填空:(1)化合物F是...